Suppr超能文献

颠覆乳腺癌 Ki-67 诊断:超声放射组学与全连接神经网络(FCNN)结合方法。

Revolutionizing breast cancer Ki-67 diagnosis: ultrasound radiomics and fully connected neural networks (FCNN) combination method.

机构信息

Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.

Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China.

出版信息

Breast Cancer Res Treat. 2024 Sep;207(2):453-468. doi: 10.1007/s10549-024-07375-x. Epub 2024 Jun 9.

Abstract

PURPOSE

This study aims to assess the diagnostic value of ultrasound habitat sub-region radiomics feature parameters using a fully connected neural networks (FCNN) combination method L2,1-norm in relation to breast cancer Ki-67 status.

METHODS

Ultrasound images from 528 cases of female breast cancer at the Affiliated Hospital of Xiangnan University and 232 cases of female breast cancer at the Affiliated Rehabilitation Hospital of Xiangnan University were selected for this study. We utilized deep learning methods to automatically outline the gross tumor volume and perform habitat clustering. Subsequently, habitat sub-regions were extracted to identify radiomics features and underwent feature engineering using the L1,2-norm. A prediction model for the Ki-67 status of breast cancer patients was then developed using a FCNN. The model's performance was evaluated using accuracy, area under the curve (AUC), specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), Recall, and F1. In addition, calibration curves and clinical decision curves were plotted for the test set to visually assess the predictive accuracy and clinical benefit of the models.

RESULT

Based on the feature engineering using the L1,2-norm, a total of 9 core features were identified. The predictive model, constructed by the FCNN model based on these 9 features, achieved the following scores: ACC 0.856, AUC 0.915, Spe 0.843, PPV 0.920, NPV 0.747, Recall 0.974, and F1 0.890. Furthermore, calibration curves and clinical decision curves of the validation set demonstrated a high level of confidence in the model's performance and its clinical benefit.

CONCLUSION

Habitat clustering of ultrasound images of breast cancer is effectively supported by the combined implementation of the L1,2-norm and FCNN algorithms, allowing for the accurate classification of the Ki-67 status in breast cancer patients.

摘要

目的

本研究旨在评估基于 L2,1-范数的完全连接神经网络(FCNN)组合方法的超声生态位亚区放射组学特征参数在乳腺癌 Ki-67 状态中的诊断价值。

方法

本研究选取了湘南学院附属医院 528 例女性乳腺癌和湘南学院附属医院康复医院 232 例女性乳腺癌的超声图像。我们利用深度学习方法自动勾画大体肿瘤体积并进行生境聚类。然后提取生境亚区以识别放射组学特征,并使用 L1,2-范数进行特征工程。然后使用 FCNN 为乳腺癌患者的 Ki-67 状态开发预测模型。使用准确性、曲线下面积(AUC)、特异性(Spe)、阳性预测值(PPV)、阴性预测值(NPV)、召回率和 F1 来评估模型的性能。此外,为测试集绘制校准曲线和临床决策曲线,以直观评估模型的预测准确性和临床获益。

结果

基于 L1,2-范数的特征工程,共确定了 9 个核心特征。基于这些 9 个特征的 FCNN 模型构建的预测模型获得了以下分数:ACC 0.856、AUC 0.915、Spe 0.843、PPV 0.920、NPV 0.747、召回率 0.974、F1 0.890。此外,验证集的校准曲线和临床决策曲线表明,模型的性能及其临床获益具有高度可信度。

结论

L1,2-范数和 FCNN 算法的联合实施有效地支持了乳腺癌超声图像的生境聚类,能够准确分类乳腺癌患者的 Ki-67 状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验