文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

增强运动学习和皮质脊髓兴奋性:电针和运动训练在健康志愿者中的作用。

Enhancement of Motor Learning and Corticospinal Excitability: The Role of Electroacupuncture and Motor Training in Healthy Volunteers.

机构信息

Group for Acupuncture Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland).

Guangzhou Zengcheng District Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China (mainland).

出版信息

Med Sci Monit. 2024 Jun 10;30:e943748. doi: 10.12659/MSM.943748.


DOI:10.12659/MSM.943748
PMID:38853414
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11177720/
Abstract

BACKGROUND This study embarked on an innovative exploration to elucidate the effects of integrating electroacupuncture (EA) with motor training (MT) on enhancing corticospinal excitability and motor learning. Central to this investigation is the interplay between homeostatic and non-homeostatic metaplasticity processes, providing insights into how these combined interventions may influence neural plasticity and motor skill acquisition. MATERIAL AND METHODS The investigation enrolled 20 healthy volunteers, subjecting them to 4 distinct interventions to parse out the individual and combined effects of EA and MT. These interventions were EA alone, MT alone, EA-priming followed by MT, and MT-priming followed by EA. The assessment of changes in primary motor cortex (M1) excitability was conducted through motor-evoked potentials (MEPs), while the grooved pegboard test (GPT) was used to evaluate alterations in motor performance. RESULTS The findings revealed that EA and MT independently contributed to enhanced M1 excitability and motor performance. However, the additional priming with EA or MT did not yield further modulation in MEPs amplitudes. Notably, EA-priming was associated with improved GPT completion times, underscoring its potential in facilitating motor learning. CONCLUSIONS The study underscores that while EA and MT individually augment motor cortex excitability and performance, their synergistic application does not further enhance or inhibit cortical excitability. This points to the involvement of non-homeostatic metaplasticity mechanisms. Nonetheless, EA emerges as a critical tool in preventing M1 overstimulation, thereby continuously fostering motor learning. The findings call for further research into the strategic application of EA, whether in isolation or with MT, within clinical settings to optimize rehabilitation outcomes.

摘要

背景:本研究创新性地探索了电针(EA)与运动训练(MT)相结合对增强皮质脊髓兴奋性和运动学习的影响。该研究的核心是内稳态和非内稳态形质变化过程的相互作用,深入了解这些联合干预措施如何影响神经可塑性和运动技能获得。

材料和方法:本研究纳入了 20 名健康志愿者,对他们进行了 4 种不同的干预,以分别分析 EA 和 MT 的单独和联合作用。这些干预包括单独的 EA、单独的 MT、EA 预处理后再进行 MT 以及 MT 预处理后再进行 EA。通过运动诱发电位(MEP)评估初级运动皮层(M1)兴奋性的变化,同时使用槽形钉板测试(GPT)评估运动表现的变化。

结果:研究结果表明,EA 和 MT 独立地增强了 M1 兴奋性和运动表现。然而,EA 或 MT 的额外预处理并没有进一步调制 MEP 幅度。值得注意的是,EA 预处理与 GPT 完成时间的改善相关,突出了其在促进运动学习方面的潜力。

结论:本研究强调,虽然 EA 和 MT 单独增强了运动皮层的兴奋性和性能,但它们的协同应用并没有进一步增强或抑制皮质兴奋性。这表明涉及非内稳态形质变化机制。然而,EA 成为防止 M1 过度刺激的关键工具,从而持续促进运动学习。研究结果呼吁进一步研究在临床环境中单独或与 MT 一起应用 EA 的策略,以优化康复效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/2d4cd9c2fb78/medscimonit-30-e943748-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/846b610aa646/medscimonit-30-e943748-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/e19068d79173/medscimonit-30-e943748-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/24cf91763af4/medscimonit-30-e943748-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/4ad871bff38d/medscimonit-30-e943748-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/2d4cd9c2fb78/medscimonit-30-e943748-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/846b610aa646/medscimonit-30-e943748-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/e19068d79173/medscimonit-30-e943748-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/24cf91763af4/medscimonit-30-e943748-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/4ad871bff38d/medscimonit-30-e943748-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5907/11177720/2d4cd9c2fb78/medscimonit-30-e943748-g005.jpg

相似文献

[1]
Enhancement of Motor Learning and Corticospinal Excitability: The Role of Electroacupuncture and Motor Training in Healthy Volunteers.

Med Sci Monit. 2024-6-10

[2]
[Effect of electroacupuncture combined with motor training on motor learning and motor cortex excitability].

Zhongguo Zhen Jiu. 2021-12-12

[3]
Study on after-effect of electroacupuncture with different time intervals on corticospinal excitability in primary motor cortex.

Zhongguo Zhen Jiu. 2023-9-1

[4]
Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.

J Neurophysiol. 2009-9-2

[5]
Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome.

Brain Stimul. 2015-1-21

[6]
Short-term immobilization influences use-dependent cortical plasticity and fine motor performance.

Neuroscience. 2016-8-25

[7]
Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Motor Learning in Healthy Humans.

Neuroscience. 2019-5-30

[8]
Recent History of Effector Use Modulates Practice-Dependent Changes in Corticospinal Excitability but Not Motor Learning.

Brain Stimul. 2016-3-30

[9]
Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex.

Restor Neurol Neurosci. 2011

[10]
Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.

Exp Brain Res. 2004-11

本文引用的文献

[1]
Metaplasticity framework for cross-modal synaptic plasticity in adults.

Front Synaptic Neurosci. 2023-1-6

[2]
Stability and learning in excitatory synapses by nonlinear inhibitory plasticity.

PLoS Comput Biol. 2022-12

[3]
The recent history of afferent stimulation modulates corticospinal excitability.

Neuroimage. 2022-9

[4]
Homeostatic plasticity and excitation-inhibition balance: The good, the bad, and the ugly.

Curr Opin Neurobiol. 2022-8

[5]
[Effect of electroacupuncture combined with motor training on motor learning and motor cortex excitability].

Zhongguo Zhen Jiu. 2021-12-12

[6]
Electroacupuncture treatment improves motor function and neurological outcomes after cerebral ischemia/reperfusion injury.

Neural Regen Res. 2022-7

[7]
Peripheral Nerve Stimulation: A Review of Techniques and Clinical Efficacy.

Pain Ther. 2021-12

[8]
The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling.

J Neurosci. 2021-6-30

[9]
Post-stroke Movement Disorders: Clinical Spectrum, Pathogenesis, and Management.

Neurol India. 2021

[10]
Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms.

Front Hum Neurosci. 2021-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索