Suppr超能文献

六项代谢性状的全甲基化组研究。

Methylome-wide studies of six metabolic traits.

作者信息

Smith Hannah M, Ng Hong Kiat, Moodie Joanna E, Gadd Danni A, McCartney Daniel L, Bernabeu Elena, Campbell Archie, Redmond Paul, Taylor Adele, Page Danielle, Corley Janie, Harris Sarah E, Tay Darwin, Deary Ian J, Evans Kathryn L, Robinson Matthew R, Chambers John C, Loh Marie, Cox Simon R, Marioni Riccardo E, Hillary Robert F

机构信息

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

出版信息

medRxiv. 2024 May 29:2024.05.29.24308103. doi: 10.1101/2024.05.29.24308103.

Abstract

Exploring the molecular correlates of metabolic health measures may identify the shared and unique biological processes and pathways that they track. Here, we performed epigenome-wide association studies (EWASs) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio (WHR), and blood-based measures of glucose, high-density lipoprotein (HDL) cholesterol, and total cholesterol. We considered blood-based DNA methylation (DNAm) from >750,000 CpG sites in over 17,000 volunteers from the Generation Scotland (GS) cohort. Linear regression analyses identified between 304 and 11,815 significant CpGs per trait at P<3.6×10, with 37 significant CpG sites across all six traits. Further, we performed a Bayesian EWAS that jointly models all CpGs simultaneously and conditionally on each other, as opposed to the marginal linear regression analyses. This identified between 3 and 27 CpGs with a posterior inclusion probability ≥ 0.95 across the six traits. Next, we used elastic net penalised regression to train epigenetic scores (EpiScores) of each trait in GS, which were then tested in the Lothian Birth Cohort 1936 (LBC1936; European ancestry) and Health for Life in Singapore (HELIOS; Indian-, Malay- and Chinese-ancestries). A maximum of 27.1% of the variance in BMI was explained by the BMI EpiScore in the subset of Malay-ancestry Singaporeans. Four metabolic EpiScores were associated with general cognitive function in LBC1936 in models adjusted for vascular risk factors (Standardised β: 0.08 - 0.12, P < 0.05). EpiScores of metabolic health are applicable across ancestries and can reflect differences in brain health.

摘要

探索代谢健康指标的分子关联因素,可能会识别出它们所追踪的共同和独特的生物学过程及途径。在此,我们对六个代谢特征进行了全表观基因组关联研究(EWAS):体重指数(BMI)、体脂百分比、腰臀比(WHR)以及血液中的葡萄糖、高密度脂蛋白(HDL)胆固醇和总胆固醇指标。我们考虑了来自苏格兰一代(GS)队列中超过17000名志愿者的750000多个CpG位点的血液DNA甲基化(DNAm)情况。线性回归分析在P<3.6×10时,每个特征识别出304至11815个显著的CpG位点,所有六个特征共有37个显著的CpG位点。此外,我们进行了贝叶斯EWAS,它对所有CpG进行联合建模,且各CpG之间相互条件依赖,这与边际线性回归分析不同。这在六个特征中识别出3至27个后验包含概率≥0.95的CpG位点。接下来,我们使用弹性网络惩罚回归来训练GS队列中每个特征的表观遗传评分(EpiScores),然后在1936年洛锡安出生队列(LBC1936;欧洲血统)和新加坡生命健康研究(HELIOS;印度、马来和中国血统)中进行测试。在马来血统的新加坡人子集中,BMI EpiScore最多解释了BMI中27.1%的方差。在针对血管危险因素进行调整的模型中,四个代谢EpiScores与LBC1936中的一般认知功能相关(标准化β:0.08 - 0.12,P < 0.05)。代谢健康的EpiScores适用于不同血统人群,并且能够反映大脑健康方面的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75ac/11160850/67245bbd1f0a/nihpp-2024.05.29.24308103v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验