Suppr超能文献

ABDS:一个用于分析生物多样性样本的生物信息学工具套件。

ABDS: a bioinformatics tool suite for analyzing biologically diverse samples.

作者信息

Du Dongping, Bhardwaj Saurabh, Lu Yingzhou, Wang Yizhi, Parker Sarah J, Zhang Zhen, Van Eyk Jennifer E, Yu Guoqiang, Clarke Robert, Herrington David M, Wang Yue

机构信息

Department of Electrical & Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.

Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.

出版信息

Res Sq. 2024 May 30:rs.3.rs-4419408. doi: 10.21203/rs.3.rs-4419408/v1.

Abstract

Bioinformatics software tools are essential to identify informative molecular features that define different phenotypic sample groups. Among the most fundamental and interrelated tasks are missing value imputation, signature gene detection, and differential pattern visualization. However, many commonly used analytics tools can be problematic when handling biologically diverse samples if either informative missingness possess high missing rates with mixed missing mechanisms, or multiple sample groups are compared and visualized in parallel. We developed the ABDS tool suite specifically for analyzing biologically diverse samples. Collectively, a mechanism-integrated group-wise pre-imputation scheme is proposed to retain informative missingness associated with signature genes, a cosine-based one-sample test is extended to detect group-silenced signature genes, and a unified heatmap is designed to display multiple sample groups. We describe the methodological principles and demonstrate the effectiveness of three analytics tools under targeted scenarios, supported by comparative evaluations and biomedical showcases. As an open-source R package, ABDS tool suite complements rather than replaces existing tools and will allow biologists to more accurately detect interpretable molecular signals among phenotypically diverse sample groups.

摘要

生物信息学软件工具对于识别定义不同表型样本组的信息丰富的分子特征至关重要。其中最基本且相互关联的任务包括缺失值插补、特征基因检测和差异模式可视化。然而,当处理生物学上多样化的样本时,如果信息性缺失具有高缺失率且缺失机制混合,或者同时比较和可视化多个样本组,许多常用的分析工具可能会出现问题。我们专门开发了ABDS工具套件用于分析生物学上多样化的样本。总体而言,提出了一种基于机制整合的分组预插补方案,以保留与特征基因相关的信息性缺失,扩展了基于余弦的单样本检验以检测组沉默特征基因,并设计了一个统一的热图来显示多个样本组。我们描述了方法学原理,并在比较评估和生物医学案例的支持下,展示了三种分析工具在目标场景下的有效性。作为一个开源的R包,ABDS工具套件是对现有工具的补充而非替代,将使生物学家能够在表型多样样本组中更准确地检测可解释的分子信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc22/11160903/b200f0799a68/nihpp-rs4419408v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验