Suppr超能文献

基于数据驱动的亚型特异性差异表达基因检测。

Data-driven detection of subtype-specific differentially expressed genes.

机构信息

Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA.

Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.

出版信息

Sci Rep. 2021 Jan 11;11(1):332. doi: 10.1038/s41598-020-79704-1.

Abstract

Among multiple subtypes of tissue or cell, subtype-specific differentially-expressed genes (SDEGs) are defined as being most-upregulated in only one subtype but not in any other. Detecting SDEGs plays a critical role in the molecular characterization and deconvolution of multicellular complex tissues. Classic differential analysis assumes a null hypothesis whose test statistic is not subtype-specific, thus can produce a high false positive rate and/or lower detection power. Here we first introduce a One-Versus-Everyone Fold Change (OVE-FC) test for detecting SDEGs. We then propose a scaled test statistic (OVE-sFC) for assessing the statistical significance of SDEGs that applies a mixture null distribution model and a tailored permutation test. The OVE-FC/sFC test was validated on both type 1 error rate and detection power using extensive simulation data sets generated from real gene expression profiles of purified subtype samples. The OVE-FC/sFC test was then applied to two benchmark gene expression data sets of purified subtype samples and detected many known or previously unknown SDEGs. Subsequent supervised deconvolution results on synthesized bulk expression data, obtained using the SDEGs detected from the independent purified expression data by the OVE-FC/sFC test, showed superior performance in deconvolution accuracy when compared with popular peer methods.

摘要

在多种组织或细胞亚型中,亚型特异性差异表达基因(SDEGs)被定义为仅在一种亚型中上调最显著,而在任何其他亚型中均不显著。检测 SDEGs 在多细胞复杂组织的分子特征和去卷积中起着关键作用。经典的差异分析假设了一个零假设,其检验统计量不是亚型特异性的,因此会产生高假阳性率和/或较低的检测能力。在这里,我们首先引入了一种用于检测 SDEGs 的“一对一折叠变化(OVE-FC)”测试。然后,我们提出了一种缩放检验统计量(OVE-sFC),用于评估 SDEGs 的统计学意义,该方法应用了混合零分布模型和定制的置换检验。我们使用从纯化亚型样本的真实基因表达谱中生成的广泛模拟数据集,对 OVE-FC/sFC 测试进行了基于类型 1错误率和检测能力的验证。然后,我们将 OVE-FC/sFC 测试应用于两个纯化亚型样本的基准基因表达数据集,并检测到许多已知或以前未知的 SDEGs。使用 OVE-FC/sFC 测试从独立的纯化表达数据中检测到的 SDEGs 对合成的总体表达数据进行后续的监督去卷积,与流行的同行方法相比,在去卷积准确性方面表现出了卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356a/7801594/da6a616ae4ef/41598_2020_79704_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验