Suppr超能文献

线粒体调节素可维持线粒体膜的完整性,并预防心脏缺血再灌注损伤。

Mitoregulin supports mitochondrial membrane integrity and protects against cardiac ischemia-reperfusion injury.

作者信息

Stein Colleen S, Zhang Xiaoming, Witmer Nathan H, Pennington Edward Ross, Shaikh Saame Raza, Boudreau Ryan L

出版信息

bioRxiv. 2024 Jun 1:2024.05.31.596875. doi: 10.1101/2024.05.31.596875.

Abstract

We and others discovered a highly-conserved mitochondrial transmembrane microprotein, named Mitoregulin (Mtln), that supports lipid metabolism. We reported that Mtln strongly binds cardiolipin (CL), increases mitochondrial respiration and Ca retention capacities, and reduces reactive oxygen species (ROS). Here we extend our observation of Mtln-CL binding and examine Mtln influence on cristae structure and mitochondrial membrane integrity during stress. We demonstrate that mitochondria from constitutive- and inducible Mtln-knockout (KO) mice are susceptible to membrane freeze-damage and that this can be rescued by acute Mtln re-expression. In mitochondrial-simulated lipid monolayers, we show that synthetic Mtln decreases lipid packing and monolayer elasticity. Lipidomics revealed that Mtln-KO heart tissues show broad decreases in 22:6-containing lipids and increased cardiolipin damage/remodeling. Lastly, we demonstrate that Mtln-KO mice suffer worse myocardial ischemia-reperfusion injury, hinting at a translationally-relevant role for Mtln in cardioprotection. Our work supports a model in which Mtln binds cardiolipin and stabilizes mitochondrial membranes to broadly influence diverse mitochondrial functions, including lipid metabolism, while also protecting against stress.

摘要

我们和其他研究人员发现了一种高度保守的线粒体跨膜微蛋白,命名为线粒体调节蛋白(Mitoregulin,Mtln),它支持脂质代谢。我们报道过,Mtln能强烈结合心磷脂(CL),增强线粒体呼吸和钙保留能力,并减少活性氧(ROS)。在此,我们扩展了对Mtln-CL结合的观察,并研究了应激期间Mtln对嵴结构和线粒体膜完整性的影响。我们证明,来自组成型和诱导型Mtln基因敲除(KO)小鼠的线粒体易受膜冻损伤,而急性Mtln重新表达可挽救这种损伤。在模拟线粒体的脂质单层中,我们发现合成的Mtln可降低脂质堆积和单层弹性。脂质组学显示,Mtln-KO心脏组织中含22:6的脂质普遍减少,心磷脂损伤/重塑增加。最后,我们证明Mtln-KO小鼠遭受更严重的心肌缺血-再灌注损伤,这暗示Mtln在心脏保护中具有与转化相关的作用。我们的研究支持一种模型,即Mtln结合心磷脂并稳定线粒体膜,从而广泛影响包括脂质代谢在内的多种线粒体功能,同时还能抵御应激。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验