Sager Amani, Rahman Shofiur, Imtiaz Syed A, Zhang Yan, Alodhayb Abdullah, Georghiou Paris E, Al-Gawati Mahmoud
Department of Process Engineering, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B3X5, Canada.
Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
ACS Omega. 2024 May 21;9(22):23485-23498. doi: 10.1021/acsomega.3c09975. eCollection 2024 Jun 4.
This study reports on the synthesis, characterization, and application of two acidic ionic liquids, namely, -carboxymethylpyridinium acetate ([HOCCHPy][CHCO] or ) and -carboxyethylpyridinium acetate ([HOC(CH)Py][CHCO] or ), as both extractants and catalysts for the oxidative and extractive desulfurization (OEDS) of model fuel oils containing heteroaromatic sulfur compounds. The structural properties of the synthesized acidic ionic liquids (ILs) were confirmed by H NMR, C NMR, and FT-IR spectroscopic analysis. To optimize the performance of the acidic AILs in the desulfurization process, the effects of different parameters, such as HO dosage, reaction time, and temperatures, were investigated. The experimental results showed that has exceptionally high desulfurization-extraction rates, with values of 99.8%, 97.8%, and 95.4%, for DBT, BT, and 4,6-DMDBT, respectively, under the optimum conditions established. Under the same conditions, the desulfurization-extraction rates using reached 91.6%, 87.3%, and 82.4%, respectively, for DBT, 4, 6-DMDBT, and BT. Both ionic liquids can be recycled up to 9 times without a significant decrease in their sulfur removal efficiencies. Furthermore, density functional theory (DFT) calculations were conducted to evaluate the electronic interaction energies (ΔIE) between the AILs with each of the sulfur-containing compounds and their putative oxidized products. The computational findings strongly supported the experimental outcomes.
本研究报道了两种酸性离子液体的合成、表征及应用,即羧甲基吡啶乙酸盐([HOCCHPy][CHCO] 或 )和羧乙基吡啶乙酸盐([HOC(CH)Py][CHCO] 或 ),它们可作为含杂环芳香硫化合物的模型燃料油氧化萃取脱硫(OEDS)的萃取剂和催化剂。通过核磁共振氢谱(H NMR)、核磁共振碳谱(C NMR)和傅里叶变换红外光谱(FT-IR)分析证实了合成的酸性离子液体(ILs)的结构性质。为了优化酸性离子液体在脱硫过程中的性能,研究了不同参数的影响,如过氧化氢(HO)用量、反应时间和温度。实验结果表明,在确定的最佳条件下,对于二苯并噻吩(DBT)、苯并噻吩(BT)和4,6-二甲基二苯并噻吩(4,6-DMDBT), 分别具有99.8%、97.8%和95.4%的超高脱硫萃取率。在相同条件下,使用 时,对于DBT、4,6-DMDBT和BT的脱硫萃取率分别达到91.6%、87.3%和82.4%。两种离子液体均可循环使用9次,且脱硫效率无显著下降。此外,进行了密度泛函理论(DFT)计算,以评估酸性离子液体与每种含硫化合物及其假定氧化产物之间的电子相互作用能(ΔIE)。计算结果有力地支持了实验结果。