文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用高性能超吸水性水凝胶聚合物提高沙质土壤的保水性

Improving Water Retention in Sandy Soils with High-Performance Superabsorbents Hydrogel Polymer.

作者信息

Omar Haneen, Alsharaeh Edreese

机构信息

Alfaisal University, College of Science, Chemistry Department, Riyadh 11533, Saudi Arabia.

出版信息

ACS Omega. 2024 May 22;9(22):23531-23541. doi: 10.1021/acsomega.4c00727. eCollection 2024 Jun 4.


DOI:10.1021/acsomega.4c00727
PMID:38854586
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11154724/
Abstract

Improving the water retention capability of drained and sandy soils is vital for nurturing high-quality soil. This protective measure ensures the conservation of essential nutrients, such as fertilizers and organic matter; maintains soil quality; and prevents erosion. Superabsorbent hydrogels (SAHs) have emerged as promising solutions to boost water retention in sandy soils, typically characterized by a poor water-holding capacity. However, there is a noticeable gap in the existing literature regarding their potential to simultaneously achieve elevated swelling ratio (SR) and water retention ratio (WRR) levels. This study presents innovative SAH systems with the highest reported SR value yet, exceeding 10000 wt %, and remarkable WRR capability explicitly designed for agricultural use. These novel SAHs were synthesized using the chemical cross-linking polymerization method from polyacrylamide (PAM) polymer, employing various PAM ratios through a one-pot hydrothermal vessel method along with diverse drying techniques. The prepared hydrogels were characterized using various techniques, such as FTIR and DSC; unraveling insights into their structural properties; and the kinetics of the swelling process. Notably, these synthesized hydrogels exhibit robustness, maintaining structural integrity even under extreme conditions such as high temperatures or pressures. Our findings suggest immense potential for these hydrogels as soil enhancers in agriculture, offering a sustainable solution to bolster soil quality and nutrient preservation.

摘要

提高排水性砂土的保水能力对于培育高质量土壤至关重要。这种保护措施可确保肥料和有机物等必需养分得以保存;维持土壤质量;并防止土壤侵蚀。高吸水性水凝胶(SAHs)已成为提高砂土保水能力的有前景的解决方案,砂土通常保水能力较差。然而,现有文献中关于它们同时实现高溶胀率(SR)和保水率(WRR)水平的潜力存在明显差距。本研究提出了创新的SAH系统,其SR值是迄今报道的最高值,超过10000 wt%,并且具有专为农业用途设计的卓越WRR能力。这些新型SAHs是通过化学交联聚合法由聚丙烯酰胺(PAM)聚合物合成的,采用一锅水热法和不同的干燥技术,使用了各种PAM比例。使用傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)等各种技术对制备出的水凝胶进行了表征;揭示了它们的结构特性以及溶胀过程的动力学。值得注意的是,这些合成水凝胶表现出很强的稳定性,即使在高温或高压等极端条件下仍能保持结构完整性。我们的研究结果表明,这些水凝胶作为农业土壤改良剂具有巨大潜力,为提高土壤质量和养分保存提供了一种可持续的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/217d83eedfc5/ao4c00727_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/ca76b1631e64/ao4c00727_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/aee24b5ff0ec/ao4c00727_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/dc28deb01399/ao4c00727_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/45df63f9e0ed/ao4c00727_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/b0350a9333ad/ao4c00727_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/f027a416bd90/ao4c00727_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/58f72ca0854e/ao4c00727_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/206bd3cd47bc/ao4c00727_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/117720242de3/ao4c00727_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/2270eaabe84a/ao4c00727_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/a67af9d0424b/ao4c00727_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/2f39c526c533/ao4c00727_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/84d9d80d3d58/ao4c00727_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/875a9e9b1707/ao4c00727_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/5035ac193b95/ao4c00727_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/7de7080b2125/ao4c00727_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/0338df3723d2/ao4c00727_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/217d83eedfc5/ao4c00727_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/ca76b1631e64/ao4c00727_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/aee24b5ff0ec/ao4c00727_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/dc28deb01399/ao4c00727_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/45df63f9e0ed/ao4c00727_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/b0350a9333ad/ao4c00727_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/f027a416bd90/ao4c00727_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/58f72ca0854e/ao4c00727_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/206bd3cd47bc/ao4c00727_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/117720242de3/ao4c00727_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/2270eaabe84a/ao4c00727_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/a67af9d0424b/ao4c00727_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/2f39c526c533/ao4c00727_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/84d9d80d3d58/ao4c00727_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/875a9e9b1707/ao4c00727_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/5035ac193b95/ao4c00727_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/7de7080b2125/ao4c00727_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/0338df3723d2/ao4c00727_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11154724/217d83eedfc5/ao4c00727_0017.jpg

相似文献

[1]
Improving Water Retention in Sandy Soils with High-Performance Superabsorbents Hydrogel Polymer.

ACS Omega. 2024-5-22

[2]
Chitosan-Graft-Poly(acrylic acid) Superabsorbent's Water Holding in Sandy Soils and Its Application in Agriculture.

Polymers (Basel). 2022-11-28

[3]
Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field.

J Adv Res. 2021-11

[4]
Transforming watermelon rind into durable superabsorbent hydrogels for enhanced soil water retention properties and adsorbs dye in water.

Heliyon. 2024-9-27

[5]
Agricultural Applications of Superabsorbent Polymer Hydrogels.

Int J Mol Sci. 2022-12-1

[6]
Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture.

Sci Total Environ. 2022-11-10

[7]
Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture.

J Agric Food Chem. 2018-5-31

[8]
Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management.

J Environ Manage. 2019-3-20

[9]
Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

Molecules. 2012-8-3

[10]
Effect of sodium alginate-based superabsorbent hydrogel on tomato growth under different water deficit conditions.

Int J Biol Macromol. 2023-12-31

引用本文的文献

[1]
Organosilanized Hydrophobic Sand for Drought Resilience: Reducing Water Percolation and Enhancing Crop Growth Conditions.

ACS Omega. 2025-8-14

[2]
Polymer Network Architecture of Single Network and Semi-Interpenetrating Network Hydrogels Modulates Water Retention and Degradation in Soil Conditioning Applications.

Chem Bio Eng. 2025-5-19

[3]
Enhancement of sandy soil water retention using superabsorbent carboxymethyl cellulose grafted with polyacrylamide and polyacrylamidomethyl propanesulfonic acid copolymer.

Sci Rep. 2025-5-13

[4]
Hydrogel Performance in Boosting Plant Resilience to Water Stress-A Review.

Gels. 2025-4-7

[5]
Progress and Prospects of Polymer/One-Dimensional Nanoclay Superabsorbent Composites.

Polymers (Basel). 2025-2-28

本文引用的文献

[1]
Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption.

J Mater Chem B. 2014-3-21

[2]
Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer.

Environ Pollut. 2018-8-15

[3]
Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber.

Carbohydr Polym. 2018-6-13

[4]
Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications.

Carbohydr Polym. 2018-1-6

[5]
An assessment of the global impact of 21st century land use change on soil erosion.

Nat Commun. 2017-12-8

[6]
Soil science. Soil and human security in the 21st century.

Science. 2015-5-7

[7]
Rain water transport and storage in a model sandy soil with hydrogel particle additives.

Eur Phys J E Soft Matter. 2014-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索