文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用大鼠的分子和生化特征预测 2 型糖尿病治疗靶点的综合机器学习模型。

Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats.

机构信息

Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.

Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

Front Endocrinol (Lausanne). 2024 May 24;15:1384984. doi: 10.3389/fendo.2024.1384984. eCollection 2024.


DOI:10.3389/fendo.2024.1384984
PMID:38854687
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11157016/
Abstract

INTRODUCTION: With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. METHOD: In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. RESULTS AND DISCUSSION: Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.

摘要

简介:随着 2 型糖尿病(T2DM)患病率的不断上升,迫切需要发现这种复杂疾病的有效治疗靶点。编码和非编码 RNA 与传统生化参数一起,已显示出作为治疗可行靶点的潜力。机器学习(ML)技术已成为预测药物反应的强大工具。 方法:在这项研究中,我们使用三种基于药用植物的药物(Rosavin、咖啡酸和异鼠李素)和一种益生菌药物(Z-biotic),在不同剂量下,开发了一种基于 ML 的模型,用于识别治疗 2 型糖尿病药物反应的最具影响力的特征。一百只大鼠被随机分配到十个组,包括正常组、链脲佐菌素诱导的糖尿病组和八个治疗组。采集血清样本进行生化分析,同时对肝组织(L)和脂肪组织(A)进行组织病理学检查,并使用定量 PCR 提取分子生物标志物。我们利用五种机器学习算法,整合了 32 个分子特征和 12 个生化特征,为每个模型和联合模型选择了最具预测性的靶点。 结果与讨论:我们的结果表明,所选药物的高剂量可有效减轻肝脏炎症、降低胰岛素抵抗,并改善脂质谱和肾功能生物标志物。机器学习模型识别出 13 个分子特征、10 个生化特征和 20 个组合特征,准确率分别为 80%、AUC(0.894、0.93 和 0.896)。本研究提出了一种 ML 模型,可准确识别与 T2DM 发病机制相关的分子途径中涉及的有效治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/58de54684b3e/fendo-15-1384984-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/bfc4334214ac/fendo-15-1384984-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/e5e75de23adb/fendo-15-1384984-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/f416b15c568b/fendo-15-1384984-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/bf4d7fd62f9e/fendo-15-1384984-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/c79b16b58528/fendo-15-1384984-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/ffad816bb956/fendo-15-1384984-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/58de54684b3e/fendo-15-1384984-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/bfc4334214ac/fendo-15-1384984-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/e5e75de23adb/fendo-15-1384984-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/f416b15c568b/fendo-15-1384984-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/bf4d7fd62f9e/fendo-15-1384984-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/c79b16b58528/fendo-15-1384984-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/ffad816bb956/fendo-15-1384984-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f30/11157016/58de54684b3e/fendo-15-1384984-g007.jpg

相似文献

[1]
Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats.

Front Endocrinol (Lausanne). 2024

[2]
Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs.

J Ethnopharmacol. 2021-6-28

[3]
Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway.

Gene. 2021-2-5

[4]
Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats.

J Ethnopharmacol. 2013-8-7

[5]
Integrated serum pharmacochemistry and network pharmacology analyses reveal the bioactive metabolites and potential functional mechanism of ground cherry (Physalis pruinosa L.) in treatment of type 2 diabetes mellitus in rats.

J Ethnopharmacol. 2023-1-10

[6]
Protective effects of quercetin and crocin in the kidneys and liver of obese Sprague-Dawley rats with Type 2 diabetes: Effects of quercetin and crocin on T2DM rats.

Hum Exp Toxicol. 2021-4

[7]
Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats.

J Ethnopharmacol. 2012-6-26

[8]
Epigallocatechin-3-gallate ameliorates glucolipid metabolism and oxidative stress in type 2 diabetic rats.

Diab Vasc Dis Res. 2020

[9]
Biochemical characterization and H NMR based metabolomics revealed Melicope lunu-ankenda leaf extract a potent anti-diabetic agent in rats.

BMC Complement Altern Med. 2017-7-10

[10]
The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats.

J Ethnopharmacol. 2018-11-3

引用本文的文献

[1]
Machine learning-based stratification of prediabetes and type 2 diabetes progression.

Diabetol Metab Syndr. 2025-6-18

本文引用的文献

[1]
Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death.

Cytokine Growth Factor Rev. 2024-6

[2]
Z-nucleic acid sensor ZBP1 in sterile inflammation.

Clin Immunol. 2024-4

[3]
Rosavin Alleviates LPS-Induced Acute Lung Injure by Modulating the TLR-4/NF-κB/MAPK Singnaling Pathways.

Int J Mol Sci. 2024-2-3

[4]
The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention.

Int J Biol Sci. 2024

[5]
Efficacy and safety of bempedoic acid among patients with and without diabetes: prespecified analysis of the CLEAR Outcomes randomised trial.

Lancet Diabetes Endocrinol. 2024-1

[6]
Probiotics and Their Role in the Management of Type 2 Diabetes Mellitus (Short-Term Versus Long-Term Effect): A Systematic Review and Meta-Analysis.

Cureus. 2023-10-9

[7]
Different types of cell death in diabetic endothelial dysfunction.

Biomed Pharmacother. 2023-12

[8]
Phenolic Compounds of L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases.

Int J Mol Sci. 2023-7-31

[9]
LncRNAs associated with oxidative stress in diabetic wound healing: Regulatory mechanisms and application prospects.

Theranostics. 2023

[10]
A genetically supported drug repurposing pipeline for diabetes treatment using electronic health records.

EBioMedicine. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索