Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
Front Endocrinol (Lausanne). 2024 May 24;15:1384984. doi: 10.3389/fendo.2024.1384984. eCollection 2024.
INTRODUCTION: With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. METHOD: In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. RESULTS AND DISCUSSION: Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.
简介:随着 2 型糖尿病(T2DM)患病率的不断上升,迫切需要发现这种复杂疾病的有效治疗靶点。编码和非编码 RNA 与传统生化参数一起,已显示出作为治疗可行靶点的潜力。机器学习(ML)技术已成为预测药物反应的强大工具。 方法:在这项研究中,我们使用三种基于药用植物的药物(Rosavin、咖啡酸和异鼠李素)和一种益生菌药物(Z-biotic),在不同剂量下,开发了一种基于 ML 的模型,用于识别治疗 2 型糖尿病药物反应的最具影响力的特征。一百只大鼠被随机分配到十个组,包括正常组、链脲佐菌素诱导的糖尿病组和八个治疗组。采集血清样本进行生化分析,同时对肝组织(L)和脂肪组织(A)进行组织病理学检查,并使用定量 PCR 提取分子生物标志物。我们利用五种机器学习算法,整合了 32 个分子特征和 12 个生化特征,为每个模型和联合模型选择了最具预测性的靶点。 结果与讨论:我们的结果表明,所选药物的高剂量可有效减轻肝脏炎症、降低胰岛素抵抗,并改善脂质谱和肾功能生物标志物。机器学习模型识别出 13 个分子特征、10 个生化特征和 20 个组合特征,准确率分别为 80%、AUC(0.894、0.93 和 0.896)。本研究提出了一种 ML 模型,可准确识别与 T2DM 发病机制相关的分子途径中涉及的有效治疗靶点。
J Ethnopharmacol. 2013-8-7
BMC Complement Altern Med. 2017-7-10
Diabetol Metab Syndr. 2025-6-18
Cytokine Growth Factor Rev. 2024-6
Clin Immunol. 2024-4
Biomed Pharmacother. 2023-12