Keha Eldad, Klotsvog Daria, Ashkenazi Sarit, Kalanthroff Eyal
Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Psychology, Achva Academic College, Arugot, Israel.
J Cogn. 2024 Jun 5;7(1):49. doi: 10.5334/joc.372. eCollection 2024.
Certain stimuli can automatically trigger different behaviors in a stimulus-driven manner. To investigate whether mathematical equations automatically trigger the tendency to engage in arithmetic processing, we asked whether the presentation of multiplication equations in an irrelevant dimension can trigger the automatic task of arithmetic processing and if so, which processes are involved. To that end, we employed a color-naming task in which participants had to name the color of different stimuli, such as: mathematical equations (e.g., 4 × 6 = 24), neutral-symbols (e.g., ####), neutral-words (e.g., building), and same-number strings (e.g., 11111), which appeared as one of four different colors. We found that mathematical equations and regular words in the irrelevant dimension triggered more task conflict (i.e., color naming's reaction time was longer) as compared to same-number strings. In addition, we found evidence for the automatic activation of different numerical processes; such that large-size equations (7 × 9 = 63) triggered more conflict as compared with small-size (2 × 3 = 6) equations and same-parity incorrect equations (3 × 2 = 8) triggered more conflict as compared to different-parity incorrect equations (4 × 2 = 9). We found no evidence indicating a distinction between the correct and incorrect equations. We discussed the relevance of the findings to the automaticity of arithmetic abilities and other domains in numerical cognition.
某些刺激能够以刺激驱动的方式自动触发不同行为。为了探究数学方程是否会自动触发进行算术处理的倾向,我们提出了这样的问题:在不相关维度中呈现乘法方程是否会触发算术处理的自动任务,如果是,涉及哪些过程。为此,我们采用了一项颜色命名任务,在该任务中,参与者必须说出不同刺激的颜色,这些刺激包括:数学方程(例如,4×6 = 24)、中性符号(例如,####)、中性词(例如,building)以及相同数字串(例如,11111),它们以四种不同颜色之一呈现。我们发现,与相同数字串相比,不相关维度中的数学方程和普通单词引发了更多的任务冲突(即颜色命名的反应时间更长)。此外,我们发现了不同数字处理自动激活的证据;例如,与小尺寸方程(2×3 = 6)相比,大尺寸方程(7×9 = 63)引发了更多冲突,与奇偶性不同的错误方程(4×2 = 9)相比,奇偶性相同的错误方程(3×2 = 8)引发了更多冲突。我们没有发现表明正确方程和错误方程之间存在差异的证据。我们讨论了这些发现与算术能力的自动性以及数字认知中其他领域的相关性。