Molina-Pérez Daniel, Portilla-Flores Edgar Alfredo, Mezura-Montes Efrén, Vega-Alvarado Eduardo, Calva-Yañez María Bárbara
Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Ciudad de Mexico, México.
Unidad Profesional Interdisciplinaria en Ingeniería Campus Tlaxcala, Instituto Politécnico Nacional, Tlaxcala, México.
PeerJ Comput Sci. 2024 May 31;10:e2095. doi: 10.7717/peerj-cs.2095. eCollection 2024.
Mixed integer nonlinear programming (MINLP) addresses optimization problems that involve continuous and discrete/integer decision variables, as well as nonlinear functions. These problems often exhibit multiple discontinuous feasible parts due to the presence of integer variables. Discontinuous feasible parts can be analyzed as subproblems, some of which may be highly constrained. This significantly impacts the performance of evolutionary algorithms (EAs), whose operators are generally insensitive to constraints, leading to the generation of numerous infeasible solutions. In this article, a variant of the differential evolution algorithm (DE) with a gradient-based repair method for MINLP problems (G-DEmi) is proposed. The aim of the repair method is to fix promising infeasible solutions in different subproblems using the gradient information of the constraint set. Extensive experiments were conducted to evaluate the performance of G-DEmi on a set of MINLP benchmark problems and a real-world case. The results demonstrated that G-DEmi outperformed several state-of-the-art algorithms. Notably, G-DEmi did not require novel improvement strategies in the variation operators to promote diversity; instead, an effective exploration within each subproblem is under consideration. Furthermore, the gradient-based repair method was successfully extended to other DE variants, emphasizing its capacity in a more general context.
混合整数非线性规划(MINLP)用于解决涉及连续和离散/整数决策变量以及非线性函数的优化问题。由于存在整数变量,这些问题通常呈现出多个不连续的可行部分。不连续的可行部分可作为子问题进行分析,其中一些子问题可能受到高度约束。这对进化算法(EA)的性能有显著影响,因为进化算法的算子通常对约束不敏感,从而导致生成大量不可行解。本文提出了一种针对MINLP问题的具有基于梯度修复方法的差分进化算法变体(G-DEmi)。修复方法的目的是利用约束集的梯度信息来修复不同子问题中有希望的不可行解。进行了广泛的实验,以评估G-DEmi在一组MINLP基准问题和一个实际案例上的性能。结果表明,G-DEmi优于几种先进算法。值得注意的是,G-DEmi在变异算子中不需要新颖的改进策略来促进多样性;相反,它考虑的是在每个子问题内进行有效的探索。此外,基于梯度的修复方法成功扩展到了其他DE变体,这突出了其在更一般情况下的能力。