Department of Computer Sciences, Utrecht University, Utrecht, The Netherlands
Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
Evol Comput. 2018 Spring;26(1):117-143. doi: 10.1162/EVCO_a_00206. Epub 2017 Feb 16.
Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.
学习和利用问题结构是优化中的关键挑战之一。对于黑盒优化 (BBO) 来说,这一点尤为重要,因为 BBO 中不存在问题的先验结构知识。现有的基于模型的进化算法 (EA) 在离散域和连续域中都非常擅长学习结构。在本文中,离散和连续的建模机制被整合到混合整数 (MI) 域中,包括离散变量和连续变量。我们重新审视了最近引入的用于 MI 域的基于模型的进化算法,即基于模型的混合整数优化遗传算法 (GAMBIT)。我们使用一种无参数方案扩展了 GAMBIT,该方案允许在无需显式指定任何参数的情况下实际使用该算法。我们还将 GAMBIT 与其他基于模型的替代方案进行了对比。通过引入一种新的显式利用混合依赖关系的机制,我们还解决了在 GAMBIT 中显式处理混合依赖关系的最终目标。我们发现,使用这种新机制处理混合依赖关系可以实现更高效的优化。我们进一步将无参数 GAMBIT 与混合整数进化策略 (MIES) 以及来自 General Algebraic Modeling System (GAMS) 商业算法套件的其他最先进的 MI 优化算法进行了对比,在有和没有约束的问题上进行了对比,并表明 GAMBIT 能够解决许多算法因变量依赖而无法成功优化的问题。