Lv Zheng, Ji Ying, Wen Guoliang, Liang Xiayi, Zhang Kun, Zhang Wei
Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China.
Department of Orthopaedics, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China.
Burns Trauma. 2024 Jun 9;12:tkae036. doi: 10.1093/burnst/tkae036. eCollection 2024.
Critical-sized bone defects represent a significant clinical challenge due to their inability to undergo spontaneous regeneration, necessitating graft interventions for effective treatment. The development of tissue-engineered scaffolds and regenerative medicine has made bone tissue engineering a highly viable treatment for bone defects. The physical and biological properties of nanocomposite biomaterials, which have optimized structures and the ability to simulate the regenerative microenvironment of bone, are promising for application in the field of tissue engineering. These biomaterials offer distinct advantages over traditional materials by facilitating cellular adhesion and proliferation, maintaining excellent osteoconductivity and biocompatibility, enabling precise control of degradation rates, and enhancing mechanical properties. Importantly, they can simulate the natural structure of bone tissue, including the specific microenvironment, which is crucial for promoting the repair and regeneration of bone defects. This manuscript provides a comprehensive review of the recent research developments and applications of structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. This review focuses on the properties and advantages these materials offer for bone repair and tissue regeneration, summarizing the latest progress in the application of nanocomposite biomaterials for bone tissue engineering and highlighting the challenges and future perspectives in the field. Through this analysis, the paper aims to underscore the promising potential of nanocomposite biomaterials in bone tissue engineering, contributing to the informed design and strategic planning of next-generation biomaterials for regenerative medicine.
临界尺寸骨缺损由于无法进行自发再生而成为一项重大的临床挑战,因此需要进行移植干预才能有效治疗。组织工程支架和再生医学的发展使骨组织工程成为治疗骨缺损的一种非常可行的方法。纳米复合生物材料具有优化的结构以及模拟骨再生微环境的能力,其物理和生物学特性在组织工程领域具有广阔的应用前景。这些生物材料通过促进细胞黏附与增殖、保持优异的骨传导性和生物相容性、实现对降解速率的精确控制以及增强机械性能,相比传统材料具有明显优势。重要的是,它们能够模拟骨组织的自然结构,包括特定的微环境,这对于促进骨缺损的修复和再生至关重要。本文对结构优化和微环境启发的纳米复合生物材料在骨组织工程中的最新研究进展和应用进行了全面综述。本综述重点关注这些材料在骨修复和组织再生方面的特性和优势,总结了纳米复合生物材料在骨组织工程应用中的最新进展,并突出了该领域的挑战和未来展望。通过这一分析,本文旨在强调纳米复合生物材料在骨组织工程中的巨大潜力,为再生医学下一代生物材料的明智设计和战略规划做出贡献。
Acta Biomater. 2018-9-22
Acta Biomater. 2018-11-24
Mater Sci Eng C Mater Biol Appl. 2020-1-29
Materials (Basel). 2024-8-27
Front Cell Dev Biol. 2021-5-7
Polymers (Basel). 2024-10-2
J Biomed Mater Res B Appl Biomater. 2024-1
BMC Musculoskelet Disord. 2025-6-3
Mil Med Res. 2025-3-3
ACS Appl Mater Interfaces. 2024-11-20
ACS Appl Bio Mater. 2023-10-16