文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

提高低生物量氯化饮用水中用于微生物测序的DNA产量。

Enhancing the DNA yield intended for microbial sequencing from a low-biomass chlorinated drinking water.

作者信息

Putri Ratna E, Vrouwenvelder Johannes S, Farhat Nadia

机构信息

Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands.

出版信息

Front Microbiol. 2024 May 24;15:1339844. doi: 10.3389/fmicb.2024.1339844. eCollection 2024.


DOI:10.3389/fmicb.2024.1339844
PMID:38855767
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11157071/
Abstract

DNA extraction yield from drinking water distribution systems and premise plumbing is a key metric for any downstream analysis such as 16S amplicon or metagenomics sequencing. This research aimed to optimize DNA yield from low-biomass (chlorinated) reverse osmosis-produced tap water by evaluating the impact of different factors during the DNA extraction procedure. The factors examined are (1) the impact of membrane materials and their pore sizes; (2) the impact of different cell densities; and (3) an alternative method for enhancing DNA yield via incubation (no nutrient spiking). DNA from a one-liter sampling volume of RO tap water with varying bacterial cell densities was extracted with five different filter membranes (mixed ester cellulose 0.2 μm, polycarbonate 0.2 μm, polyethersulfone 0.2 and 0.1 μm, polyvinylidene fluoride 0.1 μm) for biomass filtration. Our results show that (i) smaller membrane pore size solely did not increase the DNA yield of low-biomass RO tap water; (ii) the DNA yield was proportional to the cell density and substantially dependent on the filter membrane properties (i.e., the membrane materials and their pore sizes); (iii) by using our optimized DNA extraction protocol, we found that polycarbonate filter membrane with 0.2 μm pore size markedly outperformed in terms of quantity (DNA yield) and quality (background level of 16S gene copy number) of recovered microbial DNA; and finally, (iv) for one-liter sampling volume, incubation strategy enhanced the DNA yield and enabled accurate identification of the core members (i.e., and as the most abundant indicator taxa) of the bacterial community in low-biomass RO tap water. Importantly, incorporating multiple controls is crucial to distinguish between contaminant/artefactual and true taxa in amplicon sequencing studies of low-biomass RO tap water.

摘要

从饮用水分配系统和室内管道系统中提取的DNA产量是任何下游分析(如16S扩增子或宏基因组测序)的关键指标。本研究旨在通过评估DNA提取过程中不同因素的影响,优化从低生物量(氯化)反渗透产生的自来水中提取的DNA产量。研究的因素包括:(1)膜材料及其孔径的影响;(2)不同细胞密度的影响;(3)通过孵育提高DNA产量的替代方法(不添加营养物)。使用五种不同的滤膜(混合酯纤维素0.2μm、聚碳酸酯0.2μm、聚醚砜0.2和0.1μm、聚偏二氟乙烯0.1μm)对一升不同细菌细胞密度的反渗透自来水样本进行生物量过滤,提取DNA。我们的结果表明:(i)仅较小的膜孔径并不能提高低生物量反渗透自来水的DNA产量;(ii)DNA产量与细胞密度成正比,并且很大程度上取决于滤膜特性(即膜材料及其孔径);(iii)通过使用我们优化的DNA提取方案,我们发现孔径为0.2μm的聚碳酸酯滤膜在回收的微生物DNA的数量(DNA产量)和质量(16S基因拷贝数的背景水平)方面表现明显更好;最后,(iv)对于一升的采样体积,孵育策略提高了DNA产量,并能够准确识别低生物量反渗透自来水中细菌群落的核心成员(即作为最丰富指示分类群的 和 )。重要的是,在低生物量反渗透自来水的扩增子测序研究中,纳入多个对照对于区分污染物/人为因素和真正的分类群至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/24204d292435/fmicb-15-1339844-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/e56ddca79f21/fmicb-15-1339844-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/c8b8c1241ff9/fmicb-15-1339844-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/4da9a738284e/fmicb-15-1339844-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/f34041784ff7/fmicb-15-1339844-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/2ccabec89526/fmicb-15-1339844-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/a4edaa6d5899/fmicb-15-1339844-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/24204d292435/fmicb-15-1339844-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/e56ddca79f21/fmicb-15-1339844-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/c8b8c1241ff9/fmicb-15-1339844-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/4da9a738284e/fmicb-15-1339844-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/f34041784ff7/fmicb-15-1339844-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/2ccabec89526/fmicb-15-1339844-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/a4edaa6d5899/fmicb-15-1339844-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36a5/11157071/24204d292435/fmicb-15-1339844-g007.jpg

相似文献

[1]
Enhancing the DNA yield intended for microbial sequencing from a low-biomass chlorinated drinking water.

Front Microbiol. 2024-5-24

[2]
Evaluation of DNA extraction yield from a chlorinated drinking water distribution system.

PLoS One. 2021

[3]
Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

Water Res. 2016-2-18

[4]
Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine.

Water Res. 2022-2-15

[5]
Comparing the bacterial growth potential of ultra-low nutrient drinking water assessed by growth tests based on flow cytometric intact cell count versus adenosine triphosphate.

Water Res. 2021-9-15

[6]
Sediment-associated microbial community profiling: sample pre-processing through sequential membrane filtration for 16S rRNA amplicon sequencing.

BMC Microbiol. 2022-1-20

[7]
Influence of Filter Pore Size on Composition and Relative Abundance of Bacterial Communities and Select Host-Specific MST Markers in Coastal Waters of Southern Lake Michigan.

Front Microbiol. 2021-7-15

[8]
Legionella growth potential of drinking water produced by a reverse osmosis pilot plant.

Water Res. 2019-3-21

[9]
Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2010

[10]
Direct evidence of microbiological water quality changes on bacterial quantity and community caused by plumbing system.

J Environ Sci (China). 2022-6

本文引用的文献

[1]
Comparative Analysis of Core Microbiome Assignments: Implications for Ecological Synthesis.

mSystems. 2023-2-23

[2]
Bacterial diversity across four drinking water distribution systems in Croatia: impacts of water management practices and disinfection by-products.

FEMS Microbiol Ecol. 2022-12-6

[3]
Layer-by-layer modification effects on a nanopore's inner surface of polycarbonate track-etched membranes.

RSC Adv. 2020-9-30

[4]
Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria.

Sci Total Environ. 2022-7-20

[5]
Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine.

Water Res. 2022-2-15

[6]
Evaluation of DNA extraction yield from a chlorinated drinking water distribution system.

PLoS One. 2021

[7]
Spatial dynamics of bacterial community in chlorinated drinking water distribution systems supplied with two treatment plants: An integral study of free-living and particle-associated bacteria.

Environ Int. 2021-9

[8]
Unravelling the composition of tap and mineral water microbiota: Divergences between next-generation sequencing techniques and culture-based methods.

Int J Food Microbiol. 2020-8-29

[9]
Selective collection of long fragments of environmental DNA using larger pore size filter.

Sci Total Environ. 2020-5-17

[10]
Evaluation of a Highly Efficient DNA Extraction Method for Endospores.

Microorganisms. 2020-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索