Suppr超能文献

表面结晶和形状记忆支架的降解能力对骨软骨再生至关重要。

Surface Crystal and Degradability of Shape Memory Scaffold Essentialize Osteochondral Regeneration.

机构信息

Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

TMD LAB Co. Ltd., 6th Floor, 31, Gwangnaru-ro 8-gil, Seongdong-gu, Seoul, 04799, South Korea.

出版信息

Small. 2024 Oct;20(40):e2401989. doi: 10.1002/smll.202401989. Epub 2024 Jun 10.

Abstract

The minimally invasive deployment of scaffolds is a key safety factor for the regeneration of cartilage and bone defects. Osteogenesis relies primarily on cell-matrix interactions, whereas chondrogenesis relies on cell-cell aggregation. Bone matrix expansion requires osteoconductive scaffold degradation. However, chondrogenic cell aggregation is promoted on the repellent scaffold surface, and minimal scaffold degradation supports the avascular nature of cartilage regeneration. Here, a material satisfying these requirements for osteochondral regeneration is developed by integrating osteoconductive hydroxyapatite (HAp) with a chondroconductive shape memory polymer (SMP). The shape memory function-derived fixity and recovery of the scaffold enabled minimally invasive deployment and expansion to fill irregular defects. The crystalline phases on the SMP surface inhibited cell aggregation by suppressing water penetration and subsequent protein adsorption. However, HAp conjugation SMP (H-SMP) enhanced surface roughness and consequent cell-matrix interactions by limiting cell aggregation using crystal peaks. After mouse subcutaneous implantation, hydrolytic H-SMP accelerated scaffold degradation compared to that by the minimal degradation observed for SMP alone for two months. H-SMP and SMP are found to promote osteogenesis and chondrogenesis, respectively, in vitro and in vivo, including the regeneration of rat osteochondral defects using the binary scaffold form, suggesting that this material is promising for osteochondral regeneration.

摘要

支架的微创植入是软骨和骨缺损再生的关键安全因素。成骨主要依赖于细胞-基质相互作用,而软骨形成则依赖于细胞-细胞聚集。骨基质的扩展需要骨传导支架的降解。然而,软骨细胞聚集在排斥支架表面上得到促进,而最小化的支架降解支持软骨再生的无血管特性。在这里,通过将骨传导性羟基磷灰石(HAp)与软骨传导性形状记忆聚合物(SMP)集成,开发出满足这些骨软骨再生要求的材料。支架的形状记忆功能衍生的固定性和恢复能力使其能够微创植入和扩展,以填充不规则的缺陷。SMP 表面的晶体相通过抑制水渗透和随后的蛋白质吸附来抑制细胞聚集。然而,HAp 接枝 SMP(H-SMP)通过使用晶体峰限制细胞聚集来增强表面粗糙度和随后的细胞-基质相互作用。在小鼠皮下植入后,与单独 SMP 观察到的两个月最小降解相比,水解 H-SMP 加速了支架的降解。H-SMP 和 SMP 分别在体外和体内促进成骨和软骨形成,包括使用二元支架形式再生大鼠的骨软骨缺损,这表明该材料在骨软骨再生方面有很大的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验