Thorwart Thaddäus, Greb Lutz
Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
Chemistry. 2024 Aug 19;30(46):e202401912. doi: 10.1002/chem.202401912. Epub 2024 Jul 29.
Dihydrogen activation is the paradigmatic reaction of frustrated Lewis pairs (FLPs). While trigonal-planar Lewis acids have been well established in this transformation, tetrahedral Lewis acids are surprisingly limited. Indeed, several cases were computed as thermodynamically and kinetically feasible but exhibit puzzling discrepancies with experimental results. In the present study, a computational investigation of the factors influencing dihydrogen activation are considered by large ensemble sampling of encounter complexes, deformation energies and the activation strain model for a silicon/nitrogen FLP and compared with a boron/phosphorous FLP. The analysis adds the previously missing dimension of Lewis acids' structural flexibility as a factor that influences preexponential terms beyond pure transition state energies. It sheds light on the origin of "overfrustration" (defined herein), indicates structural constraint in Lewis acids as a linchpin for activation of weak donor substrates, and allows drawing a more refined mechanistic picture of this emblematic reactivity.
二氢活化是受阻路易斯酸碱对(FLPs)的典型反应。虽然三角平面路易斯酸在这种转化中已得到充分确立,但四面体路易斯酸的应用却出人意料地有限。实际上,有几个案例经计算在热力学和动力学上是可行的,但与实验结果存在令人费解的差异。在本研究中,通过对遭遇络合物进行大系综采样、计算变形能以及采用硅/氮FLP的活化应变模型,对影响二氢活化的因素进行了计算研究,并与硼/磷FLP进行了比较。该分析增加了路易斯酸结构灵活性这一此前缺失的维度,将其作为一个影响指前因子的因素,而不仅仅是单纯的过渡态能量。它揭示了“过度受阻”(本文所定义)的起源,表明路易斯酸中的结构限制是弱供体底物活化的关键,并有助于勾勒出这种标志性反应性更精细的机理图景。