Suppr超能文献

η(MgZn)/Al 界面处合金元素的界面结合强度及偏析行为的第一性原理研究

The first-principles study of interfacial bonding strength and segregation behavior of alloyed elements at the η(MgZn)/Al interface.

作者信息

Gao Qing, Qiao Guoyu, Wang Weibing, Ge Yuxiang, Ren Junqiang, Li Wei, Yang Ping, Lu Xuefeng, Qiao Jisen

机构信息

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China.

Southwest Jiaotong University, College of Leeds, Major of Computer and Science, Pidu District, 611700, Chengdu, Sichuan, China.

出版信息

Phys Chem Chem Phys. 2024 Jun 19;26(24):17240-17254. doi: 10.1039/d4cp01180e.

Abstract

For precipitation-strengthened Al alloys, the interfacial segregation behavior of alloying elements plays an important role in controlling the effectiveness of precipitation strengthening. In this work, the adhesion work () and interfacial energy () of the η(0001)/Al(111) interface were studied to gain an insight into the interface properties between the precipitate η and the Al matrix. Additionally, we examined the impact of the segregation behavior of alloyed elements on the bonding strength of the interface. The computed values for and interfacial energies indicated that the T6S3 terminated configuration represents the interfacial structure with the highest stability across all models analyzed. Focusing on the T6S3 interface, the assessed segregated energies () disclose that the segregation ability of elements from strong to weak exhibits the order of Ti > Sc > Zr > Y > Ta > Nb > Lu > Hf > Mo > V > W, while Cr and Mn elements are not easy to segregate at the interface. Sc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, and Ta preferentially occupy Al atoms, whereas Y and Lu predominantly inhabit Mg atoms. Relative to the clean interface, the electron cloud enrichment at the interface after alloying element X (Zr, Sc, Ti, W, Hf, Mn, Y, Lu and V) doping is weakened, and the ion interaction among interface atoms is enhanced. After doping alloying element X (Nb, Mo, Ta, and Cr), the degree of electron cloud enrichment at the interface is obviously enhanced, and the covalent interaction among interface atoms is enhanced. This suggests that the introduction of alloyed elements through doping can augment the bond strength at the interface between the precipitated phase and matrix, thereby reinforcing the strength and toughness of 7xxx series alloys.

摘要

对于沉淀强化铝合金,合金元素的界面偏聚行为在控制沉淀强化效果方面起着重要作用。在本工作中,研究了η(0001)/Al(111)界面的粘附功()和界面能(),以深入了解析出相η与Al基体之间的界面性质。此外,我们研究了合金元素偏聚行为对界面结合强度的影响。计算得到的和界面能值表明,在所有分析的模型中,T6S3终止构型代表了具有最高稳定性的界面结构。聚焦于T6S3界面,评估的偏聚能()表明,元素的偏聚能力从强到弱的顺序为Ti > Sc > Zr > Y > Ta > Nb > Lu > Hf > Mo > V > W,而Cr和Mn元素不易在界面偏聚。Sc、Ti、V、Cr、Mn锆、Nb、Mo、Hf和Ta优先占据Al原子,而Y和Lu主要占据Mg原子。相对于清洁界面,合金元素X(Zr、Sc、Ti、W、Hf、Mn、Y、Lu和V)掺杂后界面处的电子云富集减弱,界面原子间的离子相互作用增强。掺杂合金元素X(Nb、Mo、Ta和Cr)后,界面处的电子云富集程度明显增强,界面原子间的共价相互作用增强。这表明通过掺杂引入合金元素可以增强析出相和基体之间界面的结合强度,从而提高7xxx系列合金的强度和韧性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验