Suppr超能文献

通过腔增强布拉格衍射实现的多光子原子干涉测量

Multiphoton Atom Interferometry via Cavity-Enhanced Bragg Diffraction.

作者信息

Sabulsky D O, Junca J, Zou X, Bertoldi A, Prevedelli M, Beaufils Q, Geiger R, Landragin A, Bouyer P, Canuel B

机构信息

LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France.

Dipartimento di Fisica e Astronomia, Università di Bologna, Via Berti-Pichat 6/2, I-40126 Bologna, Italy.

出版信息

Phys Rev Lett. 2024 May 24;132(21):213601. doi: 10.1103/PhysRevLett.132.213601.

Abstract

We present a novel atom interferometer configuration that combines large momentum transfer with the enhancement of an optical resonator for the purpose of measuring gravitational strain in the horizontal directions. Using Bragg diffraction and taking advantage of the optical gain provided by the resonator, we achieve momentum transfer up to 8ℏk with mW level optical power in a cm-sized resonating waist. Importantly, our experiment uses an original resonator design that allows for a large resonating beam waist and eliminates the need to trap atoms in cavity modes. We demonstrate inertial sensitivity in the horizontal direction by measuring the change in tilt of our resonator. This result paves the way for future hybrid atom or optical gravitational wave detectors. Furthermore, the versatility of our method extends to a wide range of measurement geometries and atomic sources, opening up new avenues for the realization of highly sensitive inertial atom sensors.

摘要

我们提出了一种新型原子干涉仪配置,该配置将大动量传递与光学谐振器的增强相结合,用于测量水平方向的引力应变。利用布拉格衍射并借助谐振器提供的光学增益,我们在厘米尺寸的谐振腰斑中以毫瓦级光功率实现了高达8ℏk的动量传递。重要的是,我们的实验采用了一种原始的谐振器设计,该设计允许有大的谐振光束腰斑,并且无需将原子捕获在腔模中。我们通过测量谐振器倾斜度的变化来证明水平方向的惯性灵敏度。这一结果为未来的混合原子或光学引力波探测器铺平了道路。此外,我们方法的通用性扩展到广泛的测量几何结构和原子源,为实现高灵敏度惯性原子传感器开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验