Rudolph Jan, Wilkason Thomas, Nantel Megan, Swan Hunter, Holland Connor M, Jiang Yijun, Garber Benjamin E, Carman Samuel P, Hogan Jason M
Department of Physics, Stanford University, Stanford, California 94305, USA.
Department of Applied Physics, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2020 Feb 28;124(8):083604. doi: 10.1103/PhysRevLett.124.083604.
We report the first realization of large momentum transfer (LMT) clock atom interferometry. Using single-photon interactions on the strontium ^{1}S_{0}-^{3}P_{1} transition, we demonstrate Mach-Zehnder interferometers with state-of-the-art momentum separation of up to 141 ℏk and gradiometers of up to 81 ℏk. Moreover, we circumvent excited state decay limitations and extend the gradiometer duration to 50 times the excited state lifetime. Because of the broad velocity acceptance of the interferometry pulses, all experiments are performed with laser-cooled atoms at a temperature of 3 μK. This work has applications in high-precision inertial sensing and paves the way for LMT-enhanced clock atom interferometry on even narrower transitions, a key ingredient in proposals for gravitational wave detection and dark matter searches.
我们报道了大动量传递(LMT)时钟原子干涉测量技术的首次实现。利用锶原子(^{1}S_{0}-^{3}P_{1})跃迁上的单光子相互作用,我们展示了马赫 - 曾德尔干涉仪,其具有高达(141\hbar k)的先进动量分离,以及高达(81\hbar k)的梯度仪。此外,我们规避了激发态衰变限制,并将梯度仪持续时间延长至激发态寿命的50倍。由于干涉测量脉冲具有广泛的速度接受范围,所有实验均在温度为(3,\mu K)的激光冷却原子上进行。这项工作在高精度惯性传感方面有应用,并为在更窄跃迁上进行LMT增强的时钟原子干涉测量铺平了道路,这是引力波探测和暗物质搜索提议中的关键要素。