Wooltorton Lewis, Brown Peter, Colbeck Roger
Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom.
Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom.
Phys Rev Lett. 2024 May 24;132(21):210802. doi: 10.1103/PhysRevLett.132.210802.
Device-independent quantum key distribution allows two users to set up shared cryptographic key without the need to trust the quantum devices used. Doing so requires nonlocal correlations between the users. However, in Farkas et al. [Phys. Rev. Lett. 127, 050503 (2021)PRLTAO0031-900710.1103/PhysRevLett.127.050503] it was shown that for known protocols nonlocality is not always sufficient, leading to the question of whether there is a fundamental lower bound on the minimum amount of nonlocality needed for any device-independent quantum key distribution implementation. Here, we show that no such bound exists, giving schemes that achieve key with correlations arbitrarily close to the local set. Furthermore, some of our constructions achieve the maximum of 1 bit of key per pair of entangled qubits. We achieve this by studying a family of Bell inequalities that constitute all self-tests of the maximally entangled state with a single linear Bell expression. Within this family there exist nonlocal correlations with the property that one pair of inputs yield outputs arbitrarily close to perfect key. Such correlations exist for a range of Clauser-Horne-Shimony-Holt values, including those arbitrarily close to the classical bound. Finally, we show the existence of quantum correlations that can generate both perfect key and perfect randomness simultaneously, while also displaying arbitrarily small Clauser-Horne-Shimony-Holt violation. This opens up the possibility of a new class of cryptographic protocol.
与设备无关的量子密钥分发允许两个用户建立共享加密密钥,而无需信任所使用的量子设备。要做到这一点,用户之间需要非局域关联。然而,在法卡斯等人的论文[《物理评论快报》127, 050503 (2021年)PRLTAO0031 - 900710.1103/PhysRevLett.127.050503]中表明,对于已知协议,非局域性并不总是足够的,这就引出了一个问题:对于任何与设备无关的量子密钥分发实现,所需的最小非局域量是否存在一个基本下限。在这里,我们表明不存在这样的下限,并给出了一些方案,这些方案利用与局域集任意接近的关联来实现密钥。此外,我们的一些构造每对纠缠量子比特可实现最多1比特的密钥。我们通过研究一族贝尔不等式来实现这一点,这族贝尔不等式用单个线性贝尔表达式构成了最大纠缠态的所有自测试。在这一族中存在这样的非局域关联,即一对输入产生的输出与完美密钥任意接近。对于一系列克劳泽 - 霍恩 - 希莫尼 - 霍尔特值,包括那些任意接近经典界限的值,都存在这样的关联。最后,我们表明存在量子关联,它可以同时产生完美密钥和完美随机性,同时还显示出任意小的克劳泽 - 霍恩 - 希莫尼 - 霍尔特违背。这开辟了一类新的密码协议的可能性。