ICFO-Institut de Ciencies Fotoniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.
Phys Rev Lett. 2012 Mar 9;108(10):100402. doi: 10.1103/PhysRevLett.108.100402.
The outcomes obtained in Bell tests involving two-outcome measurements on two subsystems can, in principle, generate up to 2 bits of randomness. However, the maximal violation of the Clauser-Horne-Shimony-Holt inequality guarantees the generation of only 1.23 bits of randomness. We prove here that quantum correlations with arbitrarily little nonlocality and states with arbitrarily little entanglement can be used to certify that close to the maximum of 2 bits of randomness are produced. Our results show that nonlocality, entanglement, and randomness are inequivalent quantities. They also imply that device-independent quantum key distribution with an optimal key generation rate is possible by using almost-local correlations and that device-independent randomness generation with an optimal rate is possible with almost-local correlations and with almost-unentangled states.
在涉及对两个子系统进行二选一测量的贝尔测试中获得的结果,原则上可以产生多达 2 比特的随机性。然而,克劳瑟-霍恩-西蒙尼-霍尔特不等式的最大违背仅保证产生 1.23 比特的随机性。我们在这里证明,利用具有任意小的非局域性的量子关联和具有任意小的纠缠态,可以证明产生的随机性接近最大值 2 比特。我们的结果表明,非局域性、纠缠和随机性是不等价的量。它们还意味着,通过使用近乎局域的相关性,可以实现具有最优密钥生成率的设备无关量子密钥分发,并且通过使用近乎局域的相关性和近乎非纠缠态,可以实现具有最优速率的设备无关随机性生成。