Suppr超能文献

光学成像与放射成像及断层扫描:ROADS特刊引言

Optical versus radiographic imaging and tomography: introduction to the ROADS feature issue.

作者信息

Wang Zhehui, Liu Wei, Malko Sophia, Tremsin Anton

出版信息

Appl Opt. 2024 Apr 20;63(12):ROADS1-ROADS5. doi: 10.1364/AO.525556.

Abstract

Optical imaging is an ancient branch of imaging dating back to thousands of years. Radiographic imaging and tomography (RadIT), including the first use of X-rays by Wilhelm Röntgen, and then, -rays, energetic charged particles, neutrons, etc. are about 130 years young. The synergies between optical and radiographic imaging can be cast in the framework of these building blocks: Physics, Sources, Detectors, Methods, and Data Science, as described in Appl. Opt.61, RDS1 (2022)APOPAI0003-693510.1364/AO.455628. Optical imaging has expanded to include three-dimensional (3D) tomography (including holography), due in to part the invention of optical (including infrared) lasers. RadIT are intrinsically 3D because of the penetrating power of ionizing radiation. Both optical imaging and tomography (OIT) and RadIT are evolving into even higher dimensional regimes, such as time-resolved tomography (4D) and temporarily and spectroscopically resolved tomography (4 ). Further advances in OIT and RadIT will continue to be driven by desires for higher information yield, higher resolutions, and higher probability models with reduced uncertainties. Synergies in quantum physics, laser-driven sources, low-cost detectors, data-driven methods, automated processing of data, and artificially intelligent data acquisition protocols will be beneficial to both branches of imaging in many applications. These topics, along with an overview of the Radiography, Applied Optics, and Data Science virtual feature issue, are discussed here.

摘要

光学成像作为成像领域的一个古老分支,可追溯到数千年前。射线成像和断层扫描(RadIT),包括威廉·伦琴首次使用X射线,以及后来的γ射线、高能带电粒子、中子等,大约有130年的历史。光学成像和射线成像之间的协同作用可以体现在这些组成部分的框架中:物理学、光源、探测器、方法和数据科学,如《应用光学》61卷,RDS1(2022年)所述(APOPAI0003 - 6935,10.1364/AO.455628)。由于光学(包括红外)激光器的发明,光学成像已扩展到包括三维(3D)断层扫描(包括全息术)。由于电离辐射的穿透能力,RadIT本质上是三维的。光学成像和断层扫描(OIT)以及RadIT都在向更高维度的领域发展,如时间分辨断层扫描(4D)和时间与光谱分辨断层扫描(4 )。OIT和RadIT的进一步发展将继续由对更高信息产量、更高分辨率以及具有更低不确定性的更高概率模型的需求所驱动。量子物理学、激光驱动光源、低成本探测器、数据驱动方法、数据的自动化处理以及人工智能数据采集协议方面的协同作用,在许多应用中对成像的这两个分支都将是有益的。这里将讨论这些主题,以及射线照相术、应用光学和数据科学虚拟专题的概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验