Son Florencia A, Shi Kaihang, Snurr Randall Q, Farha Omar K
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.
Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.
ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31534-31542. doi: 10.1021/acsami.4c02117. Epub 2024 Jun 10.
The integration of metal-organic frameworks (MOFs) into composite systems serves as an effective strategy to increase the processability of these materials. Notably, MOF/fiber composites have shown much promise as protective equipment for the capture and remediation of chemical warfare agents. However, the practical application of these composites requires an understanding of their mass transport properties, as both mass transfer resistance at the surface and diffusion within the materials can impact the efficacy of these materials. In this work, we synthesized composite fibers of MOF-808 and amidoxime-functionalized polymers of intrinsic microporosity (PIM-1-AX) and measured the adsorption and mass transport behavior of -hexane and 2-chloroethyl ethyl sulfide (CEES), a sulfur mustard simulant. We developed a new Fickian diffusion model for cylindrical shapes to fit the dynamic adsorption data obtained from a commercial volumetric adsorption apparatus and found that mass transport behavior in composite fibers closely resembled that in the pure PIM fibers, regardless of MOF loading. Moreover, we found that -hexane adsorption mirrors that of CEES, indicating that it could be used as a structural mimic for future adsorption studies of the sulfur mustard simulant. These preliminary insights and the new model introduced in this work lay the groundwork for the design of next-generation composite materials for practical applications.
将金属有机框架(MOF)整合到复合体系中是提高这些材料可加工性的有效策略。值得注意的是,MOF/纤维复合材料作为用于捕获和修复化学战剂的防护装备显示出了很大的前景。然而,这些复合材料的实际应用需要了解它们的传质特性,因为材料表面的传质阻力和材料内部的扩散都会影响这些材料的效能。在这项工作中,我们合成了MOF-808与偕胺肟功能化的固有微孔聚合物(PIM-1-AX)的复合纤维,并测量了正己烷和2-氯乙基乙硫醚(CEES,一种芥子气模拟物)的吸附和传质行为。我们开发了一种适用于圆柱形的新菲克扩散模型,以拟合从商用体积吸附装置获得的动态吸附数据,发现复合纤维中的传质行为与纯PIM纤维中的传质行为非常相似,与MOF负载量无关。此外,我们发现正己烷的吸附情况与CEES相似,这表明它可以用作未来芥子气模拟物吸附研究的结构模拟物。这些初步见解以及本文中引入的新模型为设计用于实际应用的下一代复合材料奠定了基础。