Sung Yoori, Lee Wonseok, Lee Haechang, Lee Jin-Woo, Kim Bumjoon J, Yoo Seunghyup, Jeong Seonju, Kim Jihan, Lee Jung-Yong
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Nano Lett. 2024 Jun 10. doi: 10.1021/acs.nanolett.4c01675.
In this study, we examined the nanostructured molecular packing and orientations of poly[[,'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]--5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.
在本研究中,我们研究了聚[[,'-双(2-辛基十二烷基)-萘-1,4,5,8-双(二甲酰亚胺)-2,6-二基]--5,5'-(2,2'-联噻吩)](P(NDI2OD-T2))在水上形成的薄膜的纳米结构分子堆积和取向,以用于基于纳米技术的有机电子器件。首先,通过控制基于NDI的共聚物中的烷基侧链长度来调节聚合物与水之间的纳米级分子-底物相互作用。增加烷基侧链长度会诱导从面朝上到边缘朝上取向的纳米形态转变,分子动力学模拟揭示的纳米结构行为证实了这一点。其次,通过改变二元溶剂混合物中高沸点添加剂溶剂的体积比来控制P(NDI2OD-T2)的纳米级分子间相互作用。随着添加剂溶剂比例的增加,P(NDI2OD-T2)在水上的薄膜的纳米结构分子取向从边缘朝上显著变为具有更多面朝上微晶的双峰取向,从而影响电荷传输。我们的发现为在水基底上进行精确的纳米级形态控制提供了重要见解,能够形成用于有机电子器件的高性能聚合物薄膜。