Suppr超能文献

三维多孔铜/氧化铜纳米片阵列促进电化学硝酸盐到氨的转化。

Three-Dimensional Porous Cu/CuO Nanosheet Arrays Promote Electrochemical Nitrate-to-Ammonia Conversion.

作者信息

Sun Chaozhong, Xiao Yingguan, Liu Xiang, Hu Jie, Zhao Qing, Yin Zhengliang, Cao Shunsheng

机构信息

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

Jiangsu Higher Vocational College Engineering Research Center of Green Energy and Low Carbon Materials, Zhenjiang College, Zhenjiang 212028, China.

出版信息

Inorg Chem. 2024 Jun 24;63(25):11852-11859. doi: 10.1021/acs.inorgchem.4c01737. Epub 2024 Jun 10.

Abstract

The efficiency of electrochemical nitrate (NO) reduction to ammonia (NH) still remains a challenge due to the sluggish kinetics of the complex eight-electron reduction process and competitive hydrogen evolution reaction (HER). Herein, we designed new three-dimensional (3D) porous Cu/CuO nanosheet arrays (Cu/CuO NSA) by coupling a template-directed method with electroreduction. Thanks to the 3D porous structure and in-plane heterojunctions, Cu/CuO NSA can provide abundant active sites and a good interfacial effect, obtaining the maximum Faradaic efficiency (FE) of ammonia (88.09%) and high yield rate of 0.2634 mmol h cm, which is higher than that of CuO nanosheets (77.81% and 0.2188 mmol h cm) and CuO nanoparticles (34.60% and 0.0692 mmol h cm). Experimental results and DFT simulations show that the interface effect of Cu/CuO can decrease the reaction energy barrier of the key step (*NO to *NOH) and can greatly inhibit the competitive hydrogen evolution reaction, thereby achieving excellent electrocatalytic performance for nitrate-to-ammonia conversion.

摘要

由于复杂的八电子还原过程动力学缓慢以及竞争性析氢反应(HER),电化学硝酸盐(NO)还原为氨(NH₃)的效率仍然是一个挑战。在此,我们通过将模板导向法与电还原相结合,设计了新型三维(3D)多孔Cu/CuO纳米片阵列(Cu/CuO NSA)。得益于3D多孔结构和面内异质结,Cu/CuO NSA能够提供丰富的活性位点和良好的界面效应,获得了氨的最大法拉第效率(FE)(88.09%)和0.2634 mmol h⁻¹ cm⁻²的高产率,高于CuO纳米片(77.81%和0.2188 mmol h⁻¹ cm⁻²)以及CuO纳米颗粒(34.60%和0.0692 mmol h⁻¹ cm⁻²)。实验结果和DFT模拟表明,Cu/CuO的界面效应可以降低关键步骤(NO到NOH)的反应能垒,并能极大地抑制竞争性析氢反应,从而实现优异的硝酸盐到氨转化的电催化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验