用于脑室内矢量血流映射的物理引导神经网络

Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping.

作者信息

Ling Hang Jung, Bru Salome, Puig Julia, Vixege Florian, Mendez Simon, Nicoud Franck, Courand Pierre-Yves, Bernard Olivier, Garcia Damien

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1377-1388. doi: 10.1109/TUFFC.2024.3411718. Epub 2024 Nov 27.

Abstract

Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme using physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics (CFD) model and in vivo Doppler acquisitions, both the approaches demonstrate comparable reconstruction performance to the original iVFM algorithm. The efficiency of PINNs is boosted through dual-stage optimization and pre-optimized weights. On the other hand, the nnU-Net method excels in generalizability and real-time capabilities. Notably, nnU-Net shows superior robustness on sparse and truncated Doppler data while maintaining independence from explicit boundary conditions. Overall, our results highlight the effectiveness of these methods in reconstructing intraventricular vector blood flow. The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.

摘要

心室内向量血流图(iVFM)旨在增强和量化心脏成像中的彩色多普勒。在本研究中,我们提出了使用物理信息神经网络(PINN)和基于物理引导的nnU-Net的监督方法来替代传统iVFM优化方案的新方法。在从患者特异性计算流体动力学(CFD)模型导出的模拟彩色多普勒图像和体内多普勒采集中进行评估时,这两种方法都表现出与原始iVFM算法相当的重建性能。通过双阶段优化和预优化权重提高了PINN的效率。另一方面,nnU-Net方法在通用性和实时能力方面表现出色。值得注意的是,nnU-Net在稀疏和截断的多普勒数据上显示出卓越的稳健性,同时保持独立于显式边界条件。总体而言,我们的结果突出了这些方法在重建心室内向量血流方面的有效性。该研究还提出了PINN在超快彩色多普勒成像中的潜在应用,以及结合流体动力学方程以基于血流推导心血管疾病生物标志物的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索