Maidu Bahetihazi, Martinez-Legazpi Pablo, Guerrero-Hurtado Manuel, Nguyen Cathleen M, Gonzalo Alejandro, Kahn Andrew M, Bermejo Javier, Flores Oscar, Del Alamo Juan C
Dept. of Mechanical Engineering, University of Washington, Seattle, WA, USA.
Dept. of Mathematical Physics and Fluids. Universidad Nacional de Educación a Distancia & CIBERCV, Madrid, Spain.
Comput Biol Med. 2025 Feb;185:109476. doi: 10.1016/j.compbiomed.2024.109476. Epub 2024 Dec 12.
Intraventricular vector flow mapping (VFM) is an increasingly adopted echocardiographic technique that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the forces within the fluid and the resulting accelerations. This limitation has rendered VFM unable to combine information from different time frames in an acquisition sequence or derive fluctuating pressure maps. In this study, we leveraged recent advances in artificial intelligence (AI) to develop AI-VFM, a vector flow mapping modality that uses physics-informed neural networks (PINNs) encoding mass conservation and momentum balance inside the LV, and no-slip boundary conditions at the LV endocardium. AI-VFM recovers the flow and pressure fields in the LV from standard echocardiographic scans. It performs phase unwrapping and recovers flow data in areas without input color-Doppler data. AI-VFM also recovers complete flow maps at time points without color-Doppler input data, producing super-resolution flow maps. We validate AI-VFM using physiological simulated LV data and show that informing the PINNs with momentum balance is essential for achieving temporal super-resolution and significantly increases the accuracy of AI-VFM compared to informing the PINNs only with mass conservation. AI-VFM is solely informed by each patient's flow physics; it does not utilize explicit smoothness constraints or incorporate data from other patients or flow models. AI-VFM takes 15 min to run in off-the-shelf graphics processing units and its underlying PINN framework could be extended to map other flow-associated metrics such as blood residence time or the concentration of coagulation species.
心室内向量流映射(VFM)是一种越来越多地被采用的超声心动图技术,它从彩色多普勒序列中获取左心室(LV)的时间分辨二维流图。当前的VFM模型依赖于平面流不可压缩性产生的运动学约束。然而,这些模型并未考虑有关流动物理的关键信息;最显著的是流体内部的力和由此产生的加速度。这一局限性使得VFM无法在采集序列中组合来自不同时间帧的信息,也无法导出波动压力图。在本研究中,我们利用人工智能(AI)的最新进展开发了AI-VFM,这是一种向量流映射模式,它使用了在左心室内编码质量守恒和动量平衡的物理信息神经网络(PINN),以及左心内膜处的无滑移边界条件。AI-VFM从标准超声心动图扫描中恢复左心室内的流场和压力场。它执行相位解缠,并在没有输入彩色多普勒数据的区域恢复流数据。AI-VFM还能在没有彩色多普勒输入数据的时间点恢复完整的流图,生成超分辨率流图。我们使用生理模拟的左心室数据验证了AI-VFM,并表明用动量平衡为PINN提供信息对于实现时间超分辨率至关重要,并且与仅用质量守恒为PINN提供信息相比,显著提高了AI-VFM的准确性。AI-VFM仅由每个患者的流动物理信息提供信息;它不使用明确的平滑约束,也不合并来自其他患者或流模型的数据。AI-VFM在现成的图形处理单元上运行需要15分钟,其底层的PINN框架可以扩展以映射其他与流相关的指标,如血液停留时间或凝血物质的浓度。