Biointerfaces Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland.
Institut Straumann AG, Basel, 4052, Switzerland.
Adv Healthc Mater. 2024 Sep;13(23):e2400810. doi: 10.1002/adhm.202400810. Epub 2024 Jun 21.
Surface design plays a critical role in determining the integration of dental implants with bone tissue. Femtosecond laser-texturing has emerged as a breakthrough technology offering excellent uniformity and reproducibility in implant surface features. However, when compared to state-of-the-art sandblasted and acid-etched surfaces, laser-textured surface designs typically underperform in terms of osseointegration. This study investigates the capacity of a bio-inspired femtosecond laser-textured surface design to enhance osseointegration compared to state-of-the-art sandblasted & acid-etched surfaces. Laser-texturing facilitates the production of an organized trabeculae-like microarchitecture with superimposed nano-scale laser-induced periodic surface structures on both 2D and 3D samples of titanium-zirconium-alloy. Following a boiling treatment to modify the surface chemistry, improving wettability to a contact angle of 10°, laser-textured surfaces enhance fibrin network formation when in contact with human whole blood, comparable to state-of-the-art surfaces. In vitro experiments demonstrate that laser-textured surfaces significantly outperform state-of-the-art surfaces with a 2.5-fold higher level of mineralization by bone progenitor cells after 28 days of culture. Furthermore, in vivo evaluations reveal superior biomechanical integration of laser-textured surfaces after 28 days of implantation. Notably, during abiological pull-out tests, laser-textured surfaces exhibit comparable performance, suggesting that the observed enhanced osseointegration is primarily driven by the biological response to the surface.
表面设计在决定种植牙与骨组织的整合方面起着至关重要的作用。飞秒激光纹理化技术已经成为一种突破性的技术,在种植体表面特征方面具有出色的均匀性和可重复性。然而,与最先进的喷砂酸蚀表面相比,激光纹理化表面设计在骨整合方面的表现通常较差。本研究调查了一种仿生飞秒激光纹理化表面设计与最先进的喷砂酸蚀表面相比增强骨整合的能力。激光纹理化可在钛锆合金的 2D 和 3D 样本上生成具有组织状小梁样微观结构的超材料,同时在其上叠加纳米级激光诱导周期性表面结构。经过沸腾处理以改变表面化学性质,将润湿性提高到接触角为 10°,激光纹理化表面在与人全血接触时可促进纤维蛋白网络的形成,与最先进的表面相当。体外实验表明,激光纹理化表面在培养 28 天后,骨原代细胞的矿化水平比最先进的表面高 2.5 倍。此外,体内评估显示,激光纹理化表面在植入 28 天后具有更好的生物力学整合。值得注意的是,在非生物性拔出测试中,激光纹理化表面表现出相当的性能,这表明观察到的增强的骨整合主要是由表面的生物学反应驱动的。