Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; email:
Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands; email:
Annu Rev Cell Dev Biol. 2024 Oct;40(1):195-218. doi: 10.1146/annurev-cellbio-111822-014426. Epub 2024 Sep 21.
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
遗传信息的忠实性对于细胞功能和活力至关重要。DNA 双链断裂(DSB)对基因组完整性构成重大威胁,需要有效的修复机制。虽然主要的修复策略通常是准确的,但矛盾的是,也存在易错途径。本综述探讨了微同源介导末端连接(MMEJ)的最新进展和我们的理解,这是一种在生物体内保守的固有诱变性 DSB 修复途径。MMEJ 的核心是 DNA 聚合酶θ(Polθ)的活性,它是一种专门的聚合酶,为 MMEJ 的诱变提供动力。我们研究了 MMEJ 活性的分子复杂性,并讨论了其在有丝分裂期间的功能,在有丝分裂期间,Polθ 的活性是解决持续 DSB 的最后手段,特别是当同源重组受到损害时。我们探讨了靶向 Polθ 在癌症治疗和基因组编辑中的有前途的治疗应用。最后,我们讨论了 MMEJ 的进化后果,强调了它在保护基因组完整性和推动基因组多样性之间的微妙平衡。
Annu Rev Cell Dev Biol. 2024-10
Curr Opin Genet Dev. 2020-2
DNA Repair (Amst). 2025-7-21
Nucleic Acids Res. 2022-7-22
Nat Commun. 2019-9-27
Methods Mol Biol. 2025
Nat Commun. 2025-7-2
Nat Rev Mol Cell Biol. 2025-3-25
DNA Repair (Amst). 2025-1