Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
Clariant Produkte (Deutschland) GmbH, Frankfurt am Main, Germany.
Toxicology. 2024 Aug;506:153835. doi: 10.1016/j.tox.2024.153835. Epub 2024 Jun 8.
Next Generation Risk Assessment (NGRA) is an exposure-led approach to safety assessment that uses New Approach Methodologies (NAMs). Application of NGRA has been largely restricted to assessments of consumer use of cosmetics and is not currently implemented in occupational safety assessments, e.g. under EU REACH. By contrast, a large proportion of regulatory worker safety assessments are underpinned by toxicological studies using experimental animals. Consequently, occupational safety assessment represents an area that would benefit from increasing application of NGRA to safety decision making. Here, a workflow for conducting NGRA under an occupational safety context was developed, which is illustrated with a case study chemical; sodium 2-hydroxyethane sulphonate (sodium isethionate or SI). Exposures were estimated using a standard occupational exposure model following a comprehensive life cycle assessment of SI and considering factory-specific data. Outputs of this model were then used to estimate internal exposures using a Physiologically Based Kinetic (PBK) model, which was constructed with SI specific Absorption, Distribution, Metabolism and Excretion (ADME) data. PBK modelling indicated a worst-case plasma maximum concentration (C) of 0.8 μM across the SI life cycle. SI bioactivity was assessed in a battery of NAMs relevant to systemic, reproductive, and developmental toxicity; a cell stress panel, high throughput transcriptomics in three cell lines (HepG2, HepaRG and MCF-7 cells), pharmacological profiling and specific assays relating to developmental toxicity (Reprotracker and devTOX quickPredict). Points of Departure (PoDs) for SI ranged from 104 to 5044 µM. C values obtained from PBK modelling of occupational exposures to SI were compared with PoDs from the bioactivity assays to derive Bioactivity Exposure Ratios (BERs) which demonstrated the safety for workers exposed to SI under current levels of factory specific risk management. In summary, the tiered and iterative workflow developed here represents an opportunity for integrating non animal approaches for a large subset of substances for which systemic worker safety assessment is required. Such an approach could be followed to ensure that animal testing is only conducted as a "last resort" e.g. under EU REACH.
下一代风险评估(NGRA)是一种基于暴露的安全评估方法,它使用新方法学(NAMs)。NGRA 的应用主要局限于化妆品的消费者使用评估,目前尚未在职业安全评估中实施,例如在欧盟 REACH 下。相比之下,大量的监管工人安全评估是基于使用实验动物进行的毒理学研究。因此,职业安全评估是一个受益于将 NGRA 更多地应用于安全决策的领域。在这里,开发了一种在职业安全背景下进行 NGRA 的工作流程,并用一个案例研究化学物质;羟乙基磺酸钠(羟乙基磺酸钠或 SI)来说明。使用标准职业暴露模型估算暴露量,该模型是在对 SI 进行全面生命周期评估并考虑工厂特定数据后建立的。该模型的输出随后用于使用生理相关的 PK 模型(PBK)估算内部暴露量,该模型是使用 SI 特定的吸收、分布、代谢和排泄(ADME)数据构建的。PBK 模型表明,在 SI 生命周期中,最坏情况下的血浆最大浓度(C)为 0.8μM。对一组与系统毒性、生殖毒性和发育毒性相关的 NAMs 评估了 SI 的生物活性;细胞应激面板、三种细胞系(HepG2、HepaRG 和 MCF-7 细胞)中的高通量转录组学、药理学特征分析以及与发育毒性相关的特定检测(Reprotracker 和 devTOX quickPredict)。SI 的起点(PoD)范围从 104 到 5044μM。从 PBK 模型估算的职业暴露于 SI 的 C 值与生物活性测定的 PoD 进行比较,得出生物活性暴露比(BER),表明在当前工厂特定风险管理水平下,工人接触 SI 是安全的。总之,这里开发的分层和迭代工作流程为需要进行系统工人安全评估的大量物质提供了整合非动物方法的机会。可以遵循这种方法,以确保只有在欧盟 REACH 等情况下才将动物测试作为“最后的手段”进行。