Hao Qi, Zhen Cheng, Tang Qi, Wang Jiazhi, Ma Peiyu, Wu Junxiu, Wang Tianyang, Liu Dongxue, Xie Linxuan, Liu Xiao, Gu M Danny, Hoffmann Michael R, Yu Gang, Liu Kai, Lu Jun
School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China.
Adv Mater. 2024 Aug;36(33):e2406380. doi: 10.1002/adma.202406380. Epub 2024 Jun 16.
Clarifying the formation mechanism of single-atom sites guides the design of emerging single-atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten-salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn-NCl to Zn-N. The electrochemical tests and in situ attenuated total reflectance-surface-enhanced infrared absorption spectroscopy confirm that the Zn-N atomic sites are active for electrochemical carbon dioxide (CO) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m KSO, pH = 1), the Zn SAC formed at 1000 °C (ZnNC) containing Zn-N sites enables highly selective CO electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100-600 mA cm. During a 50 h continuous electrolysis at the industrial current density of 200 mA cm, ZnNC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature-universal formation of single-atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO electroreduction and extends the synthesis of SACs with controllable coordination sites.
阐明单原子位点的形成机制有助于新兴单原子催化剂(SACs)的设计,并促进在原子尺度上识别活性位点。在此,开发了一种熔盐雾化策略,用于合成具有温度通用性的锌(Zn)SACs,温度范围为400至1000/1100°C,且配位从Zn-NCl演变为Zn-N。电化学测试和原位衰减全反射-表面增强红外吸收光谱证实,Zn-N原子位点对电化学二氧化碳(CO)转化为一氧化碳(CO)具有活性。在强酸性介质(0.2 m KSO,pH = 1)中,在1000°C下形成的含有Zn-N位点的Zn SAC(ZnNC)能够实现将CO高效选择性地电还原为CO,在100-600 mA cm的宽电流密度范围内,对CO产物的选择性接近100%。在200 mA cm的工业电流密度下进行50小时连续电解时,ZnNC对CO产物的法拉第效率大于95%。这项工作展示了单原子位点的温度通用形成,为揭示用于CO电还原的Zn SACs中的活性位点提供了一个新平台,并扩展了具有可控配位点的SACs的合成。