Xing Siyang, Liu Ningning, Li Qiang, Liang Mingxing, Liu Xinru, Xie Haijiao, Yu Fei, Ma Jie
Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Nat Commun. 2024 Jun 10;15(1):4951. doi: 10.1038/s41467-024-49319-5.
Developing stable, high-performance chloride-ion storage electrodes is essential for energy storage and water purification application. Herein, a P, S co-doped porous hollow nanotube array, with a free ion diffusion pathway and highly active adsorption sites, on carbon felt electrodes (CoNiPS@CF) is reported. Due to the porous hollow nanotube structure and synergistic effect of P, S co-doped, the CoNiPS@CF based capacitive deionization (CDI) system exhibits high desalination capacity (76.1 mg g), fast desalination rate (6.33 mg g min) and good cycling stability (capacity retention rate of > 90%), which compares favorably to the state-of-the-art electrodes. The porous hollow nanotube structure enables fast ion diffusion kinetics due to the swift ion transport inside the electrode and the presence of a large number of reactive sites. The introduction of S element also reduces the passivation layer on the surface of CoNiP and lowers the adsorption energy for Cl capture, thereby improving the electrode conductivity and surface electrochemical activity, and further accelerating the adsorption kinetics. Our results offer a powerful strategy to improve the reactivity and stability of transition metal phosphides for chloride capture, and to improve the efficiency of electrochemical dechlorination technologies.
开发稳定、高性能的氯离子存储电极对于能量存储和水净化应用至关重要。在此,报道了一种在碳毡电极(CoNiPS@CF)上具有自由离子扩散路径和高活性吸附位点的P、S共掺杂多孔空心纳米管阵列。由于多孔空心纳米管结构以及P、S共掺杂的协同效应,基于CoNiPS@CF的电容去离子(CDI)系统表现出高脱盐容量(76.1 mg g)、快速脱盐速率(6.33 mg g min)和良好的循环稳定性(容量保持率>90%),与最先进的电极相比具有优势。多孔空心纳米管结构由于电极内部快速的离子传输和大量活性位点的存在,实现了快速的离子扩散动力学。S元素的引入还减少了CoNiP表面的钝化层,降低了对Cl捕获的吸附能,从而提高了电极的导电性和表面电化学活性,并进一步加速了吸附动力学。我们的结果为提高过渡金属磷化物对氯离子捕获的反应性和稳定性以及提高电化学脱氯技术的效率提供了有力策略。