Suppr超能文献

利用近红外光谱技术鉴定也门绿色咖啡豆的产地:一种具有追溯性和可持续性的有前途的工具。

Identifying the origin of Yemeni green coffee beans using near infrared spectroscopy: a promising tool for traceability and sustainability.

机构信息

Smartspectra Limited, 52b Fitzroy Street, London, W1T 5BT, UK.

RD2 Vision, 60 rue du Carignan, 34270, Valflaunes, France.

出版信息

Sci Rep. 2024 Jun 10;14(1):13342. doi: 10.1038/s41598-024-64074-9.

Abstract

Yemeni smallholder coffee farmers face several challenges, including the ongoing civil conflict, limited rainfall levels for irrigation, and a lack of post-harvest processing infrastructure. Decades of political instability have affected the quality, accessibility, and reputation of Yemeni coffee beans. Despite these challenges, Yemeni coffee is highly valued for its unique flavor profile and is considered one of the most valuable coffees in the world. Due to its exclusive nature and perceived value, it is also a prime target for food fraud and adulteration. This is the first study to identify the potential of Near Infrared Spectroscopy and chemometrics-more specifically, the discriminant analysis (PCA-LDA)-as a promising, fast, and cost-effective tool for the traceability of Yemeni coffee and sustainability of the Yemeni coffee sector. The NIR spectral signatures of whole green coffee beans from Yemeni regions (n = 124; Al Mahwit, Dhamar, Ibb, Sa'dah, and Sana'a) and other origins (n = 97) were discriminated with accuracy, sensitivity, and specificity ≥ 98% using PCA-LDA models. These results show that the chemical composition of green coffee and other factors captured on the spectral signatures can influence the discrimination of the geographical origin, a crucial component of coffee valuation in the international markets.

摘要

也门小农户咖啡种植者面临着多种挑战,包括持续的内战、灌溉用有限降雨量以及缺乏收获后加工基础设施。几十年来的政治不稳定影响了也门咖啡豆的质量、可及性和声誉。尽管面临这些挑战,也门咖啡因其独特的风味而备受推崇,被认为是世界上最有价值的咖啡之一。由于其独特性和被认为的价值,它也是食品欺诈和掺假的主要目标。这是第一项研究,旨在确定近红外光谱和化学计量学(更具体地说是判别分析(PCA-LDA))作为一种有前途、快速且具有成本效益的工具,用于追踪也门咖啡和也门咖啡行业的可持续性。使用 PCA-LDA 模型,对来自也门地区(n=124;Al Mahwit、Dhamar、Ibb、Sa'dah 和 Sana'a)和其他产地(n=97)的全绿咖啡豆的近红外光谱特征进行了准确、敏感和特异性≥98%的区分。这些结果表明,绿咖啡豆的化学成分和光谱特征上捕获的其他因素会影响其地理来源的区分,这是国际市场上咖啡估值的关键组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc60/11164903/5a5de0875748/41598_2024_64074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验