Suppr超能文献

基于生咖啡豆近红外光谱的特种咖啡杯质量预测

Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans.

作者信息

Tolessa Kassaye, Rademaker Michael, De Baets Bernard, Boeckx Pascal

机构信息

College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia.

KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, B-9000 Gent, Belgium.

出版信息

Talanta. 2016 Apr 1;150:367-74. doi: 10.1016/j.talanta.2015.12.039. Epub 2015 Dec 17.

Abstract

The growing global demand for specialty coffee increases the need for improved coffee quality assessment methods. Green bean coffee quality analysis is usually carried out by physical (e.g. black beans, immature beans) and cup quality (e.g. acidity, flavour) evaluation. However, these evaluation methods are subjective, costly, time consuming, require sample preparation and may end up in poor grading systems. This calls for the development of a rapid, low-cost, reliable and reproducible analytical method to evaluate coffee quality attributes and eventually chemical compounds of interest (e.g. chlorogenic acid) in coffee beans. The aim of this study was to develop a model able to predict coffee cup quality based on NIR spectra of green coffee beans. NIR spectra of 86 samples of green Arabica beans of varying quality were analysed. Partial least squares (PLS) regression method was used to develop a model correlating spectral data to cupping score data (cup quality). The selected PLS model had a good predictive power for total specialty cup quality and its individual quality attributes (overall cup preference, acidity, body and aftertaste) showing a high correlation coefficient with r-values of 90, 90,78, 72 and 72, respectively, between measured and predicted cupping scores for 20 out of 86 samples. The corresponding root mean square error of prediction (RMSEP) was 1.04, 0.22, 0.27, 0.24 and 0.27 for total specialty cup quality, overall cup preference, acidity, body and aftertaste, respectively. The results obtained suggest that NIR spectra of green coffee beans are a promising tool for fast and accurate prediction of coffee quality and for classifying green coffee beans into different specialty grades. However, the model should be further tested for coffee samples from different regions in Ethiopia and test if one generic or region-specific model should be developed.

摘要

全球对特色咖啡的需求不断增长,这就增加了对改进咖啡质量评估方法的需求。生咖啡豆的质量分析通常通过物理方法(如黑豆、未成熟豆)和杯测质量(如酸度、风味)评估来进行。然而,这些评估方法主观、成本高、耗时,需要样品制备,而且最终可能导致分级系统不佳。这就需要开发一种快速、低成本、可靠且可重复的分析方法,以评估咖啡的质量属性,并最终评估咖啡豆中感兴趣的化学成分(如绿原酸)。本研究的目的是开发一个能够基于生咖啡豆的近红外光谱预测咖啡杯测质量的模型。对86个不同质量的阿拉比卡生豆样品的近红外光谱进行了分析。采用偏最小二乘法(PLS)回归方法建立一个将光谱数据与杯测分数数据(杯测质量)相关联的模型。所选的PLS模型对特色咖啡总杯测质量及其各个质量属性(总体杯测偏好、酸度、醇厚度和余味)具有良好的预测能力,在86个样品中的20个样品的测量杯测分数和预测杯测分数之间显示出较高的相关系数,r值分别为90、90、78、72和72。总特色咖啡杯测质量、总体杯测偏好、酸度、醇厚度和余味的相应预测均方根误差(RMSEP)分别为1.04、0.22、0.27、0.24和0.27。所得结果表明,生咖啡豆的近红外光谱是快速准确预测咖啡质量以及将生咖啡豆分类为不同特色等级的有前途的工具。然而,该模型应进一步针对埃塞俄比亚不同地区的咖啡样品进行测试,并测试是否应开发一个通用模型或特定地区模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验