Liu Yuqi, Wu Yiquan, Yuan YuBin, Zhao Langyue
Opt Express. 2024 May 6;32(10):17295-17317. doi: 10.1364/OE.517341.
To achieve defect detection in bare polycrystalline silicon solar cells under electroluminescence (EL) conditions, we have proposed ASDD-Net, a deep learning algorithm evaluated offline on EL images. The model integrates strategies such as downsampling adjustment, feature fusion optimization, and detection head improvement. The ASDD-Net utilizes the Space to Depth (SPD) module to effectively extract edge and fine-grained information. The proposed Enhanced Cross-Stage Partial Network Fusion (EC2f) and Hybrid Attention CSP Net (HAC3) modules are placed at different positions to enhance feature extraction capability and improve feature fusion effects, thereby enhancing the model's ability to perceive defects of different sizes and shapes. Furthermore, placing the MobileViT_CA module before the second detection head balances global and local information perception, further enhancing the performance of the detection heads. The experimental results show that the ASDD-Net model achieves a mAP value of 88.81% on the publicly available PVEL-AD dataset, and the detection performance is better than the current SOTA model. The experimental results on the ELPV and NEU-DET datasets verify that the model has some generalization ability. Moreover, the proposed model achieves a processing frame rate of 69 frames per second, meeting the real-time defect detection requirements for solar cell surface defects.
为了在电致发光(EL)条件下实现对裸多晶硅太阳能电池的缺陷检测,我们提出了ASDD-Net,一种在EL图像上进行离线评估的深度学习算法。该模型集成了下采样调整、特征融合优化和检测头改进等策略。ASDD-Net利用空间到深度(SPD)模块有效地提取边缘和细粒度信息。所提出的增强跨阶段部分网络融合(EC2f)和混合注意力CSP网络(HAC3)模块放置在不同位置,以增强特征提取能力并改善特征融合效果,从而提高模型感知不同尺寸和形状缺陷的能力。此外,在第二个检测头之前放置MobileViT_CA模块平衡了全局和局部信息感知,进一步提高了检测头的性能。实验结果表明,ASDD-Net模型在公开可用的PVEL-AD数据集上实现了88.81%的平均精度均值(mAP)值,检测性能优于当前的最优模型。在ELPV和NEU-DET数据集上的实验结果验证了该模型具有一定的泛化能力。此外,所提出的模型实现了每秒69帧的处理帧率,满足了太阳能电池表面缺陷实时检测的要求。