Lang Du, Lv Zhenzhen
School of Information and Design, Zhejiang Industry Polytechnic College, Shaoxing, 312000, China.
Faculty of Robot Science and Engineering, Northeastern University, Shenyang, 110167, China.
Sci Rep. 2024 Sep 5;14(1):20671. doi: 10.1038/s41598-024-72019-5.
Automated defect detection in electroluminescence (EL) images of photovoltaic (PV) modules on production lines remains a significant challenge, crucial for replacing labor-intensive and costly manual inspections and enhancing production capacity. This paper presents a novel PV defect detection algorithm that leverages the YOLO architecture, integrating an attention mechanism and the Transformer module. We introduce a polarized self-attention mechanism in the feature extraction stage, enabling separate extraction of spatial and semantic features of PV modules, combined with the original input features, to enhance the network's feature representation capabilities. Subsequently, we integrate the proposed CNN Combined Transformer (CCT) module into the model. The CCT module employs the transformer to extract contextual semantic information more effectively, improving detection accuracy. The experimental results demonstrate that the proposed method achieves a 77.9% mAP50 on the PVEL-AD dataset while preserving real-time detection capabilities. This method enhances the mAP50 by 17.2% compared to the baseline, and the mAP50:95 metric exhibits an 8.4% increase over the baseline.
光伏(PV)组件生产线中电致发光(EL)图像的自动缺陷检测仍然是一项重大挑战,对于取代劳动密集型且成本高昂的人工检查并提高生产能力至关重要。本文提出了一种新颖的光伏缺陷检测算法,该算法利用YOLO架构,集成了注意力机制和Transformer模块。我们在特征提取阶段引入了极化自注意力机制,能够分别提取光伏组件的空间和语义特征,并与原始输入特征相结合,以增强网络的特征表示能力。随后,我们将提出的卷积神经网络联合Transformer(CCT)模块集成到模型中。CCT模块采用Transformer更有效地提取上下文语义信息,提高检测精度。实验结果表明,该方法在PVEL-AD数据集上实现了77.9%的mAP50,同时保持了实时检测能力。与基线相比,该方法将mAP50提高了17.2%,mAP50:95指标比基线提高了8.4%。