Suppr超能文献

太赫兹深度学习融合计算机断层扫描

Terahertz deep learning fusion computed tomography.

作者信息

Hung Yi-Chun, Su Weng-Tai, Chao Ta-Hsuan, Lin Chia-Wen, Yang Shang-Hua

出版信息

Opt Express. 2024 May 6;32(10):17763-17774. doi: 10.1364/OE.518997.

Abstract

Terahertz (THz) tomographic imaging based on time-resolved THz signals has raised significant attention due to its non-invasive, non-destructive, non-ionizing, material-classification, and ultrafast-frame-rate nature for object exploration and inspection. However, the material and geometric information of the tested objects is inherently embedded in the highly distorted THz time-domain signals, leading to substantial computational complexity and the necessity for intricate multi-physics models to extract the desired information. To address this challenge, we present a THz multi-dimensional tomographic framework and multi-scale spatio-spectral fusion Unet (MS3-Unet), capable of fusing and collaborating the THz signals across diverse signal domains. MS3-Unet employs multi-scale branches to extract spatio-spectral features, which are subsequently processed through element-wise adaptive filters and fused to achieve high-quality THz image restoration. Evaluated by geometry-variant objects, MS3-Unet outperforms other peer methods in PSNR and SSIM. In addition to the superior performance, the proposed framework additionally provides high scalable, adjustable, and accessible interface to collaborate with different user-defined models or methods.

摘要

基于时间分辨太赫兹信号的太赫兹(THz)层析成像,因其在物体探测和检测方面具有非侵入性、非破坏性、非电离性、材料分类能力以及超快帧率特性,而备受关注。然而,被测物体的材料和几何信息固有地嵌入在高度失真的太赫兹时域信号中,这导致了大量的计算复杂性以及需要复杂的多物理模型来提取所需信息。为应对这一挑战,我们提出了一种太赫兹多维层析框架和多尺度时空谱融合Unet(MS3-Unet),它能够在不同信号域融合和协作太赫兹信号。MS3-Unet采用多尺度分支来提取时空谱特征,随后通过逐元素自适应滤波器对这些特征进行处理并融合,以实现高质量的太赫兹图像恢复。通过几何形状可变的物体进行评估,MS3-Unet在PSNR和SSIM方面优于其他同类方法。除了卓越的性能外,所提出的框架还提供了高度可扩展、可调整且易于使用的接口,以便与不同的用户定义模型或方法进行协作。

相似文献

1
Terahertz deep learning fusion computed tomography.
Opt Express. 2024 May 6;32(10):17763-17774. doi: 10.1364/OE.518997.
3
Terahertz spatio-temporal deep learning computed tomography.
Opt Express. 2022 Jun 20;30(13):22523-22537. doi: 10.1364/OE.461439.
4
J-Net: Improved U-Net for Terahertz Image Super-Resolution.
Sensors (Basel). 2024 Jan 31;24(3):932. doi: 10.3390/s24030932.
5
Three-dimensional terahertz wave imaging.
Philos Trans A Math Phys Eng Sci. 2004 Feb 15;362(1815):283-98; discussion 298-9. doi: 10.1098/rsta.2003.1317.
6
Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Nov 15;281:121586. doi: 10.1016/j.saa.2022.121586. Epub 2022 Jul 6.
7
Efficient sub-pixel convolutional neural network for terahertz image super-resolution.
Opt Lett. 2022 Jun 15;47(12):3115-3118. doi: 10.1364/OL.454267.
9
Automated Inorganic Pigment Classification in Plastic Material Using Terahertz Spectroscopy.
Sensors (Basel). 2021 Jul 9;21(14):4709. doi: 10.3390/s21144709.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验