Suppr超能文献

基于残差学习的太赫兹光谱图像重建自适应压缩感知算法。

Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning.

机构信息

Key Laboratory of Grain Informatcon Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China; School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou, 450001, China.

Key Laboratory of Grain Informatcon Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China; College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou, 450001, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Nov 15;281:121586. doi: 10.1016/j.saa.2022.121586. Epub 2022 Jul 6.

Abstract

Terahertz time-domain spectroscopy (THz-TDS) is widely applied in the field of rapid nondestructive detection of grain owing to its low photon energy and high penetrating power. Nevertheless, terahertz imaging systems suffer from the problems of long image acquisition time and massive data processing. To mitigate these issues, this work presents an adaptive compressed sensing reconstruction algorithm for terahertz spectral images based on residual learning (ATResCS). The algorithm compresses the number of data samples, reducing the amount of data required for imaging and improving the imaging speed. Further, ATResCS reduces the time complexity by employing a convolutional neural network. The algorithm is validated by acquiring terahertz spectral image data via a THz-TDS system. ATResCS outperforms conventional algorithms regarding peak signal-to-noise ratio (PSNR) and structural similarity, significantly reducing the reconstruction time and, thus, enabling real-time reconstruction. Specifically, at low sampling rates (0.1), ATResCS retains key spectral image information. The average PSNR is 0.96 - 1.015 dB higher than that of DR2-Net, reducing the average reconstruction time by 0.1 - 0.2 s. Experiments demonstrate that ATResCS has better reconfiguration capability and lower algorithm complexity, enabling high-quality and fast reconstruction of terahertz spectral images.

摘要

太赫兹时域光谱(THz-TDS)由于其低光子能量和高穿透能力,在谷物快速无损检测领域得到了广泛应用。然而,太赫兹成像系统存在图像采集时间长和数据处理量大的问题。为了解决这些问题,本工作提出了一种基于残差学习的太赫兹光谱图像自适应压缩感知重建算法(ATResCS)。该算法通过压缩数据样本数量,减少成像所需的数据量,提高成像速度。此外,ATResCS 通过使用卷积神经网络降低时间复杂度。通过 THz-TDS 系统获取太赫兹光谱图像数据对算法进行验证。与传统算法相比,ATResCS 在峰值信噪比(PSNR)和结构相似性方面表现更好,显著降低了重建时间,从而实现了实时重建。具体而言,在低采样率(0.1)下,ATResCS 保留了关键的光谱图像信息。平均 PSNR 比 DR2-Net 高 0.96-1.015dB,平均重建时间缩短了 0.1-0.2s。实验表明,ATResCS 具有更好的重构能力和更低的算法复杂度,能够实现高质量、快速的太赫兹光谱图像重建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验