Xiong Jing, Wang Junqiao, Liu Xiangpeng, Zhang Hao, Wang Qiaoqiao, Sun Jingyi, Zhang Baolin
Opt Express. 2024 May 20;32(11):19910-19923. doi: 10.1364/OE.519699.
Dielectric nanostructures exhibit low-loss electrical and magnetic resonance, making them ideal for quantum information processing. In this study, the periodic double-groove silicon nanodisk (DGSND) is used to support the anapole state. Based on the distribution properties of the electromagnetic field in anapole states, the anapoles are manipulated by cutting the dielectric metamaterial. Quantum dots (QDs) are used to stimulate the anapole and control the amplification of the photoluminescence signal within the QDs. By opening symmetrical holes in the long axis of the nanodisk in the dielectric metamaterial, the current distribution of Mie resonance can be adjusted. As a result, the toroidal dipole moment is altered, leading to an enhanced electric field (E-field) and Purcell factor. When the dielectric metamaterial is deposited on the Ag substrate separated by the silicon dioxide (SiO) layer, the structure exhibits ultra-narrow perfect absorption with even higher E-field and Purcell factor enhancement compared to silicon (Si) nanodisks.
介电纳米结构表现出低损耗的电和磁共振,使其成为量子信息处理的理想选择。在本研究中,周期性双槽硅纳米盘(DGSND)被用于支持无偶极态。基于无偶极态下电磁场的分布特性,通过切割介电超材料来操控无偶极子。量子点(QD)用于激发无偶极子并控制量子点内光致发光信号的放大。通过在介电超材料的纳米盘长轴上开对称孔,可以调整米氏共振的电流分布。结果,环形偶极矩发生改变,导致电场(E场)增强和珀塞尔因子增大。当介电超材料沉积在由二氧化硅(SiO)层隔开的银(Ag)衬底上时,与硅(Si)纳米盘相比,该结构表现出超窄的完美吸收,且电场和珀塞尔因子增强更高。