Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg , Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Saale), Germany.
International Max Planck Research School for Science and Technology of Nanostructures , Weinberg 2, 06120 Halle (Saale), Germany.
Nano Lett. 2017 Nov 8;17(11):6886-6892. doi: 10.1021/acs.nanolett.7b03248. Epub 2017 Oct 10.
Resonant dielectric nanostructures represent a promising platform for light manipulation at the nanoscale. In this paper, we describe an active photonic system based on Ge(Si) quantum dots coupled to silicon nanodisks. We show that Mie resonances govern the enhancement of the photoluminescent signal from embedded quantum dots due to a good spatial overlap of the emitter position with the electric field of Mie modes. We identify the coupling mechanism, which allows for engineering the resonant Mie modes through the interaction of several nanodisks. In particular, the mode hybridization in a nanodisk trimer results in an up to 10-fold enhancement of the luminescent signal due to the excitation of resonant antisymmetric magnetic and electric dipole modes.
介谐振纳米结构为纳米尺度的光操控提供了一个很有前途的平台。在本文中,我们描述了一个基于锗(硅)量子点与硅纳米盘耦合的主动光子系统。我们表明,由于发射器位置与米氏模式的电场具有良好的空间重叠,米氏共振控制了嵌入量子点的光致发光信号的增强。我们确定了耦合机制,通过几个纳米盘的相互作用可以对共振米氏模式进行工程设计。特别是,由于共振的反对称磁偶极子和电偶极子模式的激发,纳米盘三聚体中的模式杂化导致发光信号增强了 10 倍。