Wang S F
Opt Express. 2024 Apr 22;32(9):16132-16139. doi: 10.1364/OE.519661.
The nonlinear Schrödinger equation (NLSE) under nonlocal nonlinear media (NNM) is described and the approximate analytical solutions of the vector multipole solitons and vortex optical soliton clusters are obtained via the variational method. The results show that the structure of the optical solitons is determined by modulation depth and topological charge. In the propagation process, the spatial soliton has an observable rotation property. Under certain conditions, the rotating space modulated vortex optical solitons degenerate into circular symmetric vortex optical solitons. The results can be extended to other physical systems.
描述了非局部非线性介质(NNM)下的非线性薛定谔方程(NLSE),并通过变分方法得到了矢量多极孤子和涡旋光学孤子簇的近似解析解。结果表明,光学孤子的结构由调制深度和拓扑电荷决定。在传播过程中,空间孤子具有明显的旋转特性。在一定条件下,旋转空间调制涡旋光学孤子退化为圆对称涡旋光学孤子。这些结果可推广到其他物理系统。