Suppr超能文献

利用深度学习实现平面手性超材料的圆二色响应的灵活设计。

Flexible design of chiroptical response of planar chiral metamaterials using deep learning.

作者信息

Luo Chen, Sang Tian, Ge Zekun, Lu Junjian, Wang Yueke

出版信息

Opt Express. 2024 Apr 8;32(8):13978-13985. doi: 10.1364/OE.510656.

Abstract

Optical chirality is highly demanded for biochemical sensing, spectral detection, and advanced imaging, however, conventional design schemes for chiral metamaterials require highly computational cost due to the trial-and-error strategy, and it is crucial to accelerate the design process particularly in comparably simple planar chiral metamaterials. Herein, we construct a bidirectional deep learning (BDL) network consists of spectra predicting network (SPN) and design predicting network (DPN) to accelerate the prediction of spectra and inverse design of chiroptical response of planar chiral metamaterials. It is shown that the proposed BDL network can accelerate the design process and exhibit high prediction accuracy. The average process of prediction only takes ∼15 ms, which is 1 in 40000 compared to finite-difference time-domain (FDTD). The mean-square error (MSE) loss of forward and inverse prediction reaches 0.0085 after 100 epochs. Over 95.2% of training samples have MSE ≤ 0.0042 and MSE ≤ 0.0044 for SPN and DPN, respectively; indicating that the BDL network is robust in the inverse deign without underfitting or overfitting for both SPN and DPN. Our founding shows great potentials in accelerating the on-demand design of planar chiral metamaterials.

摘要

光学手性在生化传感、光谱检测和先进成像方面有很高的需求,然而,由于采用试错策略,传统的手性超材料设计方案需要高昂的计算成本,因此加速设计过程至关重要,尤其是在相对简单的平面手性超材料中。在此,我们构建了一个由光谱预测网络(SPN)和设计预测网络(DPN)组成的双向深度学习(BDL)网络,以加速平面手性超材料的光谱预测和旋光响应的逆向设计。结果表明,所提出的BDL网络可以加速设计过程并具有较高的预测精度。预测的平均过程仅需约15毫秒,与有限时域差分法(FDTD)相比,这一速度提高了40000倍。经过100个轮次后,正向和逆向预测的均方误差(MSE)损失达到0.0085。对于SPN和DPN,分别有超过95.2%的训练样本的MSE≤0.0042和MSE≤0.0044;这表明BDL网络在逆向设计中具有鲁棒性,对于SPN和DPN均不存在欠拟合或过拟合现象。我们的研究结果显示出在加速平面手性超材料按需设计方面的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验