Suppr超能文献

基于深度学习的手性超材料按需设计

Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.

作者信息

Ma Wei, Cheng Feng, Liu Yongmin

出版信息

ACS Nano. 2018 Jun 26;12(6):6326-6334. doi: 10.1021/acsnano.8b03569. Epub 2018 Jun 11.

Abstract

Deep-learning framework has significantly impelled the development of modern machine learning technology by continuously pushing the limit of traditional recognition and processing of images, speech, and videos. In the meantime, it starts to penetrate other disciplines, such as biology, genetics, materials science, and physics. Here, we report a deep-learning-based model, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a metamaterial structure and its optical responses from a number of training examples, which circumvents the time-consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful tool in studying complicated light-matter interactions and accelerating the on-demand design of nanophotonic devices, systems, and architectures for real world applications.

摘要

深度学习框架通过不断突破传统图像、语音和视频识别与处理的极限,显著推动了现代机器学习技术的发展。与此同时,它开始渗透到其他学科,如生物学、遗传学、材料科学和物理学。在此,我们报告了一种基于深度学习的模型,该模型由两个通过部分堆叠策略组装的双向神经网络组成,用于自动设计和优化在预定波长下具有强烈旋光响应的三维手性超材料。该模型可以从大量训练示例中帮助发现超材料结构与其光学响应之间复杂、非直观的关系,这避免了传统超材料设计中耗时的逐个案例数值模拟。这种方法不仅能更准确、高效地实现光学性能的正向预测,还能使人们根据给定要求反向检索设计。我们的结果表明,这种数据驱动的模型可以作为一种非常强大的工具,用于研究复杂的光与物质相互作用,并加速用于实际应用的纳米光子器件、系统和架构的按需设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验