Huang Ruiting, Zhou Feng, Li Xiao, Xu Peng, Wang Yi, Zhan Mingsheng
Opt Express. 2024 Jun 3;32(12):21293-21303. doi: 10.1364/OE.525454.
Metasurfaces made of subwavelength silicon nanopillars provide unparalleled capacity to manipulate light, and have emerged as one of the leading platforms for developing integrated photonic devices. In this study, we report on a compact, passive approach based on planar metasurface optics to generate large optical trap arrays. The unique configuration is achieved with a meta-hologram to convert a single incident laser beam into an array of individual beams, followed up with a metalens to form multiple laser foci for single rubidium atom trapping. We experimentally demonstrate two-dimensional arrays of 5 × 5 and 25 × 25 at the wavelength of 830 nm, validating the capability and scalability of our metasurface design. Beam waists ∼1.5 µm, spacings (about 15 µm), and low trap depth variations (8%) of relevance to quantum control for an atomic array are achieved in a robust and efficient fashion. The presented work highlights a compact, stable, and scalable trap array platform well-suitable for Rydberg-state mediated quantum gate operations, which will further facilitate advances in neutral atom quantum computing.
由亚波长硅纳米柱制成的超表面具有无与伦比的光操控能力,已成为开发集成光子器件的主要平台之一。在本研究中,我们报道了一种基于平面超表面光学的紧凑、无源方法,用于生成大型光学陷阱阵列。通过超全息图将单个入射激光束转换为单个光束阵列,再利用金属透镜形成多个激光焦点以捕获单个铷原子,从而实现独特的配置。我们在830 nm波长下通过实验证明了5×5和25×25的二维阵列,验证了我们超表面设计的能力和可扩展性。以稳健且高效的方式实现了与原子阵列量子控制相关的约1.5 µm的束腰、(约15 µm)的间距以及低陷阱深度变化(8%)。所展示的工作突出了一个紧凑、稳定且可扩展的陷阱阵列平台,非常适合里德堡态介导的量子门操作,这将进一步推动中性原子量子计算的发展。