文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2-单酰甘油模拟脂质体促进肠道淋巴转运提高二氢青蒿素口服生物利用度

2-Monoacylglycerol Mimetic Liposomes to Promote Intestinal Lymphatic Transport for Improving Oral Bioavailability of Dihydroartemisinin.

机构信息

School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.

Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.

出版信息

Int J Nanomedicine. 2024 Jun 6;19:5273-5295. doi: 10.2147/IJN.S462374. eCollection 2024.


DOI:10.2147/IJN.S462374
PMID:38859952
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11164214/
Abstract

PURPOSE: Reducing the first-pass hepatic effect via intestinal lymphatic transport is an effective way to increase the oral absorption of drugs. 2-Monoacylglycerol (2-MAG) as a primary digestive product of dietary lipids triglyceride, can be assembled in chylomicrons and then transported from the intestine into the lymphatic system. Herein, we propose a biomimetic strategy and report a 2-MAG mimetic nanocarrier to target the intestinal lymphatic system via the lipid absorption pathway and improve oral bioavailability. METHODS: The 2-MAG mimetic liposomes were designed by covalently bonding serinol (SER) on the surface of liposomes named SER-LPs to simulate the structure of 2-MAG. Dihydroartemisinin (DHA) was chosen as the model drug because of its disadvantages such as poor solubility and high first-pass effect. The endocytosis and exocytosis mechanisms were investigated in Caco-2 cells and Caco-2 cell monolayers. The capacity of intestinal lymphatic transport was evaluated by ex vivo biodistribution and in vivo pharmacokinetic experiments. RESULTS: DHA loaded SER-LPs (SER-LPs-DHA) had a particle size of 70 nm and a desirable entrapment efficiency of 93%. SER-LPs showed sustained release for DHA in the simulated gastrointestinal environment. In vitro cell studies demonstrated that the cellular uptake of SER-LPs primarily relied on the caveolae- rather than clathrin-mediated endocytosis pathway and preferred to integrate into the chylomicron assembly process through the endoplasmic reticulum/Golgi apparatus route. After oral administration, SER-LPs efficiently promoted drug accumulation in mesenteric lymphatic nodes. The oral bioavailability of DHA from SER-LPs was 10.40-fold and 1.17-fold larger than that of free DHA and unmodified liposomes at the same dose, respectively. CONCLUSION: SER-LPs improved oral bioavailability through efficient intestinal lymphatic transport. These findings of the current study provide a good alternative strategy for oral delivery of drugs with high first-pass hepatic metabolism.

摘要

目的:通过肠淋巴转运减少首过肝脏效应是提高药物口服吸收的有效方法。2-单酰甘油(2-MAG)作为膳食脂质三酰甘油的主要消化产物,可以组装在乳糜微粒中,然后从肠道进入淋巴系统。在此,我们提出了一种仿生策略,并报告了一种 2-MAG 模拟纳米载体,通过脂质吸收途径靶向肠道淋巴系统,提高口服生物利用度。

方法:通过在脂质体表面共价键合丝氨酸(SER)设计 2-MAG 模拟脂质体,命名为 SER-LPs,以模拟 2-MAG 的结构。选择二氢青蒿素(DHA)作为模型药物,因为其溶解度差和首过效应高的缺点。在 Caco-2 细胞和 Caco-2 细胞单层中研究了内吞作用和外排作用机制。通过离体生物分布和体内药代动力学实验评价了肠道淋巴转运能力。

结果:DHA 负载的 SER-LPs(SER-LPs-DHA)粒径为 70nm,包封率为 93%。SER-LPs 在模拟胃肠道环境中对 DHA 表现出持续释放。体外细胞研究表明,SER-LPs 对 DHA 的细胞摄取主要依赖于胞饮作用而不是网格蛋白介导的内吞作用途径,并且更喜欢通过内质网/高尔基体途径整合到乳糜微粒组装过程中。口服给药后,SER-LPs 能够有效地促进药物在肠系膜淋巴结中的积累。与游离 DHA 和未修饰脂质体相比,SER-LPs 使 DHA 的口服生物利用度分别提高了 10.40 倍和 1.17 倍。

结论:SER-LPs 通过有效的肠淋巴转运提高了口服生物利用度。本研究结果为具有高首过肝代谢的药物的口服给药提供了一种很好的替代策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/59acc112949a/IJN-19-5273-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/b26900531137/IJN-19-5273-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/82c2d7ee2f42/IJN-19-5273-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/cff919e05db5/IJN-19-5273-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/4962b512372a/IJN-19-5273-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/9825264f12fe/IJN-19-5273-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/c7eb83f767a2/IJN-19-5273-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/b57c11b36ebb/IJN-19-5273-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/dcfa35302a46/IJN-19-5273-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/e6402cce4e0d/IJN-19-5273-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/59acc112949a/IJN-19-5273-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/b26900531137/IJN-19-5273-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/82c2d7ee2f42/IJN-19-5273-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/cff919e05db5/IJN-19-5273-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/4962b512372a/IJN-19-5273-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/9825264f12fe/IJN-19-5273-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/c7eb83f767a2/IJN-19-5273-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/b57c11b36ebb/IJN-19-5273-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/dcfa35302a46/IJN-19-5273-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/e6402cce4e0d/IJN-19-5273-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/11164214/59acc112949a/IJN-19-5273-g0010.jpg

相似文献

[1]
2-Monoacylglycerol Mimetic Liposomes to Promote Intestinal Lymphatic Transport for Improving Oral Bioavailability of Dihydroartemisinin.

Int J Nanomedicine. 2024

[2]
Bioactive-Chylomicrons for Oral Lymphatic Targeting of Berberine Chloride: Novel Flow-Blockage Assay in Tissue-Based and Caco-2 Cell Line Models.

Pharm Res. 2018-1-5

[3]
Fabrication of Luteolin Nanoemulsion by Box-Behnken Design to Enhance its Oral Absorption Via Lymphatic Transport.

AAPS PharmSciTech. 2024-9-5

[4]
Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption.

Eur J Pharm Biopharm. 2023-4

[5]
Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs.

Biomaterials. 2018-10-18

[6]
Bile salt integrated cerasomes: A potential nanocarrier for enhancement of the oral bioavailability of idarubicin hydrochloride.

Int J Pharm. 2024-9-5

[7]
Triglyceride-mimetic prodrugs of scutellarin enhance oral bioavailability by promoting intestinal lymphatic transport and avoiding first-pass metabolism.

Drug Deliv. 2021-12

[8]
Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, characterization, cell line studies and efficacy in schizophrenia.

Drug Dev Ind Pharm. 2019-6-6

[9]
Labrasol-Enriched Nanoliposomal Formulation: Novel Approach to Improve Oral Absorption of Water-Insoluble Drug, Carvedilol.

AAPS PharmSciTech. 2018-7-20

[10]
Intestinal transport as a potential determinant of drug bioavailability.

Curr Clin Pharmacol. 2013-8

引用本文的文献

[1]
Artemisiae Annuae Herba: from anti-malarial legacy to emerging anti-cancer potential.

Theranostics. 2025-6-20

[2]
Novel Cyano-Artemisinin Dimer ZQJ29 Targets PARP1 to Induce Ferroptosis in Pancreatic Cancer Treatment.

Adv Sci (Weinh). 2025-8

[3]
Peel: A Promising Source of Nutraceutical for the Mitigation of Cardiovascular Risk in Arthritic Rats Through the Gut-Joint Axis.

Biomolecules. 2025-4-16

[4]
Stiff-Soft Hybrid Biomimetic Nano-Emulsion for Targeted Liver Delivery and Treatment of Early Nonalcoholic Fatty Liver Disease.

Pharmaceutics. 2024-10-7

本文引用的文献

[1]
Boosting Reactive Oxygen Species Generation with a Dual-Catalytic Nanomedicine for Enhanced Tumor Nanocatalytic Therapy.

ACS Appl Mater Interfaces. 2023-12-27

[2]
Pharmacokinetics of cycloheximide in rats and evaluation of its effect as a blocker of intestinal lymph formation.

Eur J Pharm Biopharm. 2023-12

[3]
Peroxide-Simulating and GSH-Depleting Nanozyme for Enhanced Chemodynamic/Photodynamic Therapy via Induction of Multisource ROS.

ACS Appl Mater Interfaces. 2023-10-18

[4]
An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes.

Adv Pharm Bull. 2023-7

[5]
Cracking the intestinal lymphatic system window utilizing oral delivery vehicles for precise therapy.

J Nanobiotechnology. 2023-8-10

[6]
Multifunctional nanocarriers for targeted drug delivery and diagnostic applications of lymph nodes metastasis: a review of recent trends and future perspectives.

J Nanobiotechnology. 2023-8-2

[7]
Nano-drug delivery system: a promising approach against breast cancer.

Ther Deliv. 2023-5

[8]
Metal-organic framework-encapsulated dihydroartemisinin nanoparticles induces apoptotic cell death in ovarian cancer by blocking ROMO1-mediated ROS production.

J Nanobiotechnology. 2023-6-29

[9]
Intestinal epithelium penetration of liraglutide via cholic acid pre-complexation and zein/rhamnolipids nanocomposite delivery.

J Nanobiotechnology. 2023-1-16

[10]
The intracellular fate and transport mechanism of shape, size and rigidity varied nanocarriers for understanding their oral delivery efficiency.

Biomaterials. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索