文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

受壁面剪应力影响的弯曲血管中癌细胞黏附的计算分析,用于预测转移扩散。

Computational analysis of cancer cell adhesion in curved vessels affected by wall shear stress for prediction of metastatic spreading.

作者信息

Rahmati Nahid, Maftoon Nima

机构信息

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.

Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.

出版信息

Front Bioeng Biotechnol. 2024 May 27;12:1393413. doi: 10.3389/fbioe.2024.1393413. eCollection 2024.


DOI:10.3389/fbioe.2024.1393413
PMID:38860135
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11163055/
Abstract

The dynamics of circulating tumor cells (CTCs) within blood vessels play a pivotal role in predicting metastatic spreading of cancer within the body. However, the limited understanding and method to quantitatively investigate the influence of vascular architecture on CTC dynamics hinders our ability to predict metastatic process effectively. To address this limitation, the present study was conducted to investigate the influence of blood vessel tortuosity on the behaviour of CTCs, focusing specifically on establishing methods and examining the role of shear stress in CTC-vessel wall interactions and its subsequent impact on metastasis. We computationally simulated CTC behaviour under various shear stress conditions induced by vessel tortuosity. Our computational model, based on the lattice Boltzmann method (LBM) and a coarse-grained spectrin-link membrane model, efficiently simulates blood plasma dynamics and CTC deformability. The model incorporates fluid-structure interactions and receptor-ligand interactions crucial for CTC adhesion using the immersed boundary method (IBM). Our findings reveal that uniform shear stress in straight vessels leads to predictable CTC-vessel interactions, whereas in curved vessels, asymmetrical flow patterns and altered shear stress create distinct adhesion dynamics, potentially influencing CTC extravasation. Quantitative analysis shows a 25% decrease in the wall shear stress in low-shear regions and a 58.5% increase in the high-shear region. We observed high-shear regions in curved vessels to be potential sites for increased CTC adhesion and extravasation, facilitated by elevated endothelial expression of adhesion molecules. This phenomenon correlates with the increased number of adhesion bonds, which rises to approximately 40 in high-shear regions, compared to around 12 for straight vessels and approximately 5-6 in low-shear regions. The findings also indicate an optimal cellular stiffness necessary for successful CTC extravasation in curved vessels. By the quantitative assessment of the risk of CTC extravasation as a function of vessel tortuosity, our study offers a novel tool for the prediction of metastasis risk to support the development of personalized therapeutic interventions based on individual vascular characteristics and tumor cell properties.

摘要

血管内循环肿瘤细胞(CTC)的动态变化在预测癌症在体内的转移扩散中起着关键作用。然而,对血管结构对CTC动态影响的定量研究的理解和方法有限,这阻碍了我们有效预测转移过程的能力。为了解决这一局限性,本研究旨在探讨血管迂曲度对CTC行为的影响,特别关注建立方法并研究剪切应力在CTC与血管壁相互作用中的作用及其对转移的后续影响。我们通过计算模拟了在血管迂曲度引起的各种剪切应力条件下CTC的行为。我们基于格子玻尔兹曼方法(LBM)和粗粒化血影蛋白连接膜模型的计算模型,有效地模拟了血浆动力学和CTC的变形能力。该模型使用浸入边界法(IBM)纳入了对CTC粘附至关重要的流固相互作用和受体-配体相互作用。我们的研究结果表明,直血管中的均匀剪切应力导致可预测的CTC与血管的相互作用,而在弯曲血管中,不对称的流动模式和改变的剪切应力产生了独特的粘附动力学,并可能影响CTC的外渗。定量分析表明,低剪切区域的壁面剪切应力降低了25%,高剪切区域增加了58.5%。我们观察到弯曲血管中的高剪切区域是CTC粘附和外渗增加的潜在部位,这是由粘附分子在内皮细胞上的表达升高所促进的。这种现象与粘附键数量的增加相关,在高剪切区域增加到约40个,而直血管约为12个,低剪切区域约为5-6个。研究结果还表明,弯曲血管中成功的CTC外渗需要最佳的细胞硬度。通过将CTC外渗风险作为血管迂曲度的函数进行定量评估,我们的研究提供了一种预测转移风险的新工具,以支持基于个体血管特征和肿瘤细胞特性的个性化治疗干预的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/8b917d29e402/fbioe-12-1393413-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/368901c3c9b2/fbioe-12-1393413-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/086044c22cdf/fbioe-12-1393413-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/03a5f9a069a3/fbioe-12-1393413-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/518806e22a99/fbioe-12-1393413-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/39f31093dbfc/fbioe-12-1393413-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/2d04627f0b60/fbioe-12-1393413-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/64ccd3ce2b73/fbioe-12-1393413-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/4c5ac5be7593/fbioe-12-1393413-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/8b917d29e402/fbioe-12-1393413-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/368901c3c9b2/fbioe-12-1393413-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/086044c22cdf/fbioe-12-1393413-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/03a5f9a069a3/fbioe-12-1393413-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/518806e22a99/fbioe-12-1393413-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/39f31093dbfc/fbioe-12-1393413-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/2d04627f0b60/fbioe-12-1393413-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/64ccd3ce2b73/fbioe-12-1393413-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/4c5ac5be7593/fbioe-12-1393413-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11163055/8b917d29e402/fbioe-12-1393413-g009.jpg

相似文献

[1]
Computational analysis of cancer cell adhesion in curved vessels affected by wall shear stress for prediction of metastatic spreading.

Front Bioeng Biotechnol. 2024-5-27

[2]
Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

Biomech Model Mechanobiol. 2011-8-5

[3]
Investigating the Interaction Between Circulating Tumor Cells and Local Hydrodynamics Experiment and Simulations.

Cell Mol Bioeng. 2020-10-21

[4]
Numerical study on the adhesion of a circulating tumor cell in a curved microvessel.

Biomech Model Mechanobiol. 2021-2

[5]
Adaptable Microfluidic Vessel-on-a-Chip Platform for Investigating Tumor Metastatic Transport in Bloodstream.

Anal Chem. 2022-9-6

[6]
Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.

Biomech Model Mechanobiol. 2017-4

[7]
Modeling Cell Adhesion and Extravasation in Microvascular System.

Adv Exp Med Biol. 2018

[8]
Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.

Biomed Eng Online. 2006-6-16

[9]
Mechanical deformation and death of circulating tumor cells in the bloodstream.

Cancer Metastasis Rev. 2024-12

[10]
Flow Adhesion Assay for Analyzing Shear-resistant Adhesion of Metastatic Cancer Cells to Endothelial Cells.

Bio Protoc. 2016-2-20

引用本文的文献

[1]
Intravasation-On-µDevice (INVADE): Engineering Dynamic Vascular Interfaces to Study Cancer Cell Intravasation.

Adv Mater. 2025-7

[2]
Circulating Tumor Cells: Origin, Role, Current Applications, and Future Perspectives for Personalized Medicine.

Biomedicines. 2024-9-20

本文引用的文献

[1]
Lattice Boltzmann simulation of deformable fluid-filled bodies: progress and perspectives.

Soft Matter. 2024-3-13

[2]
Numerical study of ultra-large von Willebrand factor multimers in coagulopathy.

Biomech Model Mechanobiol. 2024-6

[3]
Future trends in incidence and long-term survival of metastatic cancer in the United States.

Commun Med (Lond). 2023-5-27

[4]
Estimation of the Number of Individuals Living With Metastatic Cancer in the United States.

J Natl Cancer Inst. 2022-11-14

[5]
AFM-compatible microfluidic platform for affinity-based capture and nanomechanical characterization of circulating tumor cells.

Microsyst Nanoeng. 2020-3-23

[6]
Interactions of platelets with circulating tumor cells contribute to cancer metastasis.

Sci Rep. 2021-7-29

[7]
Margination and adhesion dynamics of tumor cells in a real microvascular network.

PLoS Comput Biol. 2021-2

[8]
Investigating the Interaction Between Circulating Tumor Cells and Local Hydrodynamics Experiment and Simulations.

Cell Mol Bioeng. 2020-10-21

[9]
Numerical study on the adhesion of a circulating tumor cell in a curved microvessel.

Biomech Model Mechanobiol. 2021-2

[10]
Comparison of Cancer Cell Elasticity by Cell Type.

J Cancer. 2020-7-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索