Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Department of Orthopaedics, The Guizhou Hospital of Beijing Jishuitan Hospital, Guiyang, China.
Comput Assist Surg (Abingdon). 2024 Dec;29(1):2345066. doi: 10.1080/24699322.2024.2345066. Epub 2024 Jun 11.
BACKGROUND: Machine learning (ML), a subset of artificial intelligence (AI), uses algorithms to analyze data and predict outcomes without extensive human intervention. In healthcare, ML is gaining attention for enhancing patient outcomes. This study focuses on predicting additional hospital days (AHD) for patients with cervical spondylosis (CS), a condition affecting the cervical spine. The research aims to develop an ML-based nomogram model analyzing clinical and demographic factors to estimate hospital length of stay (LOS). Accurate AHD predictions enable efficient resource allocation, improved patient care, and potential cost reduction in healthcare. METHODS: The study selected CS patients undergoing cervical spine surgery and investigated their medical data. A total of 945 patients were recruited, with 570 males and 375 females. The mean number of LOS calculated for the total sample was 8.64 ± 3.7 days. A LOS equal to or <8.64 days was categorized as the AHD-negative group ( = 539), and a LOS > 8.64 days comprised the AHD-positive group ( = 406). The collected data was randomly divided into training and validation cohorts using a 7:3 ratio. The parameters included their general conditions, chronic diseases, preoperative clinical scores, and preoperative radiographic data including ossification of the anterior longitudinal ligament (OALL), ossification of the posterior longitudinal ligament (OPLL), cervical instability and magnetic resonance imaging T2-weighted imaging high signal (MRI T2WIHS), operative indicators and complications. ML-based models like Lasso regression, random forest (RF), and support vector machine (SVM) recursive feature elimination (SVM-RFE) were developed for predicting AHD-related risk factors. The intersections of the variables screened by the aforementioned algorithms were utilized to construct a nomogram model for predicting AHD in patients. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and C-index were used to evaluate the performance of the nomogram. Calibration curve and decision curve analysis (DCA) were performed to test the calibration performance and clinical utility. RESULTS: For these participants, 25 statistically significant parameters were identified as risk factors for AHD. Among these, nine factors were obtained as the intersection factors of these three ML algorithms and were used to develop a nomogram model. These factors were gender, age, body mass index (BMI), American Spinal Injury Association (ASIA) scores, magnetic resonance imaging T2-weighted imaging high signal (MRI T2WIHS), operated segment, intraoperative bleeding volume, the volume of drainage, and diabetes. After model validation, the AUC was 0.753 in the training cohort and 0.777 in the validation cohort. The calibration curve exhibited a satisfactory agreement between the nomogram predictions and actual probabilities. The C-index was 0.788 (95% confidence interval: 0.73214-0.84386). On the decision curve analysis (DCA), the threshold probability of the nomogram ranged from 1 to 99% (training cohort) and 1 to 75% (validation cohort). CONCLUSION: We successfully developed an ML model for predicting AHD in patients undergoing cervical spine surgery, showcasing its potential to support clinicians in AHD identification and enhance perioperative treatment strategies.
背景:机器学习(ML)是人工智能(AI)的一个分支,它使用算法分析数据并预测结果,而无需大量人工干预。在医疗保健领域,ML 正受到越来越多的关注,因为它可以改善患者的预后。本研究专注于预测颈椎病(CS)患者的额外住院天数(AHD),这是一种影响颈椎的疾病。该研究旨在开发一种基于 ML 的列线图模型,分析临床和人口统计学因素,以估计住院时间(LOS)。准确预测 AHD 可实现资源的有效分配,改善患者的护理,并可能降低医疗保健成本。
方法:本研究选择接受颈椎手术的 CS 患者,并研究他们的医疗数据。共招募了 945 名患者,其中男性 570 名,女性 375 名。计算得出总样本的平均 LOS 为 8.64±3.7 天。LOS 等于或<8.64 天的患者被归类为 AHD 阴性组(n=539),LOS > 8.64 天的患者被归类为 AHD 阳性组(n=406)。收集的数据使用 7:3 的比例随机分为训练和验证队列。参数包括一般情况、慢性病、术前临床评分以及术前影像学数据,包括前纵韧带骨化(OALL)、后纵韧带骨化(OPLL)、颈椎不稳和磁共振成像 T2 加权成像高信号(MRI T2WIHS)、手术指标和并发症。开发了基于 ML 的模型,如 Lasso 回归、随机森林(RF)和支持向量机(SVM)递归特征消除(SVM-RFE),用于预测 AHD 相关的风险因素。利用上述算法筛选出的变量的交集,构建了一个预测患者 AHD 的列线图模型。接受者操作特征(ROC)曲线的曲线下面积(AUC)和 C 指数用于评估列线图的性能。通过校准曲线和决策曲线分析(DCA)来测试校准性能和临床实用性。
结果:对于这些参与者,确定了 25 个具有统计学意义的参数作为 AHD 的风险因素。其中,有 9 个因素是这三种 ML 算法的交集因素,并用于开发列线图模型。这些因素包括性别、年龄、体重指数(BMI)、美国脊髓损伤协会(ASIA)评分、磁共振成像 T2 加权成像高信号(MRI T2WIHS)、手术节段、术中出血量、引流量和糖尿病。在模型验证后,训练队列中的 AUC 为 0.753,验证队列中的 AUC 为 0.777。校准曲线显示列线图预测值与实际概率之间具有良好的一致性。C 指数为 0.788(95%置信区间:0.73214-0.84386)。在决策曲线分析(DCA)中,列线图的阈值概率范围为 1%至 99%(训练队列)和 1%至 75%(验证队列)。
结论:我们成功开发了一种用于预测颈椎手术患者 AHD 的 ML 模型,该模型具有支持临床医生识别 AHD 和改善围手术期治疗策略的潜力。
Comput Assist Surg (Abingdon). 2024-12
Clin Orthop Relat Res. 2024-9-1
BMJ Open Respir Res. 2025-3-22