Suppr超能文献

基于MRI的机器学习和放射组学方法评估轻度脊髓型颈椎病患者的脊髓功能

MRI-Based Machine Learning and Radiomics Methods for Assessing Spinal Cord Function in Patients with Mild Cervical Spondylotic Myelopathy.

作者信息

Wang He, Wang Kai, Wang Yutian, Liu Zhenlei, Zhang Lei, Jia Shanhang, He Kun, Zhang Xiangyu, Wu Hao

机构信息

Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Xicheng District, Beijing 100053, China.

Department of Neurosurgery, China-Japan Friendship School of Clinical Medicine, Peking University, No. 2 Yinghuayuan East Street, Chaoyang District, Beijing 100029, China.

出版信息

Bioengineering (Basel). 2025 Jun 17;12(6):666. doi: 10.3390/bioengineering12060666.

Abstract

(1) Background: Patients with mild cervical spondylotic myelopathy (CSM) who delay surgery risk progression. While PET evaluates spinal cord function, its cost and radiation limit its use. (2) Methods: In this prospective study, patients with mild cervical spondylosis underwent preoperative 18F-FDG PET-MRI. Narrowed spinal levels were classified based on whether SUV was decreased. Follow-up assessments were conducted. Two machine learning models using MRI T2-based radiomics were developed to identify stenotic levels and decreased SUV. (3) Results: Patients with normal SUV showed greater symptom improvement. The radiomics models performed well, with AUCs of 0.981/0.962 (training/testing) for stenosis detection and 0.830/0.812 for predicting SUV decline. The model outperformed clinicians in predicting SUV decline, improving the AUC by 10%. (4) Conclusion: Patients with preserved SUV have better outcomes. MRI-based radiomics shows potential for identifying stenosis and predicting spinal cord function changes for preoperative assessment, though larger studies are needed to validate its clinical utility.

摘要

(1)背景:轻度脊髓型颈椎病(CSM)患者若延迟手术,病情有进展风险。虽然正电子发射断层扫描(PET)可评估脊髓功能,但其成本和辐射限制了其应用。(2)方法:在这项前瞻性研究中,轻度颈椎病患者接受了术前18F-氟代脱氧葡萄糖(18F-FDG)PET-磁共振成像(MRI)检查。根据标准化摄取值(SUV)是否降低对变窄的脊髓节段进行分类。进行了随访评估。开发了两种基于MRI T2的放射组学机器学习模型,以识别狭窄节段和SUV降低情况。(3)结果:SUV正常的患者症状改善更明显。放射组学模型表现良好,检测狭窄的曲线下面积(AUC)在训练/测试时分别为0.981/0.962,预测SUV下降的AUC为0.830/0.812。该模型在预测SUV下降方面优于临床医生,AUC提高了10%。(4)结论:SUV保持正常的患者预后更好。基于MRI的放射组学在识别狭窄和预测脊髓功能变化以进行术前评估方面显示出潜力,不过需要更大规模的研究来验证其临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc3/12189521/2677f7bdec4e/bioengineering-12-00666-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验