Wang Yin-Feng, Qi Ming-Yu, Conte Marco, Tang Zi-Rong, Xu Yi-Jun
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China.
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Angew Chem Int Ed Engl. 2024 Aug 19;63(34):e202407791. doi: 10.1002/anie.202407791. Epub 2024 Jul 23.
Light-driven photoredox catalysis presents a promising approach for the activation and conversion of methane (CH) into high value-added chemicals under ambient conditions. However, the high C-H bond dissociation energy of CH and the absence of well-defined C-H activation sites on catalysts significantly limit the highly efficient conversion of CH toward multicarbon (C) hydrocarbons, particularly ethylene (CH). Herein, we demonstrate a bimetallic design of Ag nanoparticles (NPs) and Pd single atoms (SAs) on ZnO for the cascade conversion of CH into CH with the highest production rate compared with previous works. Mechanistic studies reveal that the synergistic effect of Ag NPs and Pd SAs, upon effecting key bond-breaking and -forming events, lowers the overall energy barrier of the activation process of both CH and the resulting CH, constituting a truly synergistic catalytic system to facilitate the CH generation. This work offers a novel perspective on the advancement of photocatalytic directional CH conversion toward high value-added C hydrocarbons through the subtle design of bimetallic cascade catalyst strategy.
光驱动光氧化还原催化为在环境条件下将甲烷(CH₄)活化并转化为高附加值化学品提供了一种很有前景的方法。然而,CH₄ 较高的 C-H 键解离能以及催化剂上缺乏明确的 C-H 活化位点,显著限制了 CH₄ 向多碳(C₂⁺)烃类,特别是乙烯(C₂H₄)的高效转化。在此,我们展示了一种在 ZnO 上的 Ag 纳米颗粒(NPs)和 Pd 单原子(SAs)的双金属设计,用于将 CH₄ 级联转化为 C₂H₄,与之前的工作相比,其产率最高。机理研究表明,Ag NPs 和 Pd SAs 的协同效应在引发关键的键断裂和形成事件时,降低了 CH₄ 及其生成的 C₂H₄ 活化过程的整体能垒,构成了一个真正的协同催化体系以促进 C₂H₄ 的生成。这项工作通过双金属级联催化剂策略的巧妙设计,为光催化定向 CH₄ 转化为高附加值 C₂⁺ 烃类的进展提供了新的视角。