Lu Chunqiang, Wang Yaolin, Tian Dong, Xu Ruidong, Wong Roong Jien, Xi Shibo, Liu Wen, Wang Hua, Tu Xin, Li Kongzhai
State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Nat Commun. 2025 May 17;16(1):4585. doi: 10.1038/s41467-025-59709-y.
The direct conversion of methane into valuable unsaturated C hydrocarbons (CH and CH) attracts growing attention. Non-thermal plasma offers a promising approach for this process under mild conditions. However, the competing formation of CH and excessive dehydrogenation limit the selectivity toward CH and CH. Herein, we develop a promising shielded bifunctional nanoreactor with a hollow structure and mesoporous channels (NaWO-MnO/m-SiO) that effectively limits CH overactivation and promotes selective coupling to form CH and CH under plasma activation, achieving 39% CH conversion with 42.3% CH and CH fraction. This nanoreactor features isolated NaWO embedded within the channels and MnO confined in the cavity of the SiO hollow nanospheres, enabling internal tandem catalysis at co-located active sites. NaWO induces the conversion of diffused CH and CH into reactive intermediates (CH and CH), which subsequently couple on the MnO surface to form CH and CH. Furthermore, the mesoporous channels inhibit the plasma discharge within the nanoreactor, preventing deep dehydrogenation of CH species to solid carbon. This nanoreactor demonstrates a highly selective route for the nonoxidative conversion of methane to valuable C hydrocarbons, offering a new paradigm for the rational design of catalysts for plasma-driven chemical processes.
将甲烷直接转化为有价值的不饱和碳氢化合物(CH和CH)越来越受到关注。非热等离子体为该过程在温和条件下提供了一种有前景的方法。然而,CH的竞争生成和过度脱氢限制了对CH和CH的选择性。在此,我们开发了一种有前景的具有中空结构和介孔通道的屏蔽双功能纳米反应器(NaWO-MnO/m-SiO),其在等离子体活化下有效限制了CH的过度活化,并促进选择性偶联以形成CH和CH,实现了39%的CH转化率,CH和CH的分数为42.3%。该纳米反应器的特点是通道内嵌入孤立的NaWO,SiO中空纳米球腔内限制MnO,从而在共定位的活性位点实现内部串联催化。NaWO促使扩散的CH和CH转化为反应中间体(CH和CH),随后它们在MnO表面偶联形成CH和CH。此外,介孔通道抑制了纳米反应器内的等离子体放电,防止CH物种深度脱氢生成固体碳。该纳米反应器展示了一条将甲烷非氧化转化为有价值的碳氢化合物的高选择性途径,为等离子体驱动化学过程的催化剂合理设计提供了新范例。